ﻻ يوجد ملخص باللغة العربية
We present the results of a medium resolution optical spectroscopic survey of 92 cool ($3,000 lesssim T_{rm eff} lesssim 4,500,$K) southern TESS candidate planet hosts, and describe our spectral fitting methodology used to recover stellar parameters. We quantify model deficiencies at predicting optical fluxes, and while our technique works well for $T_{rm eff}$, further improvements are needed for [Fe/H]. To this end, we developed an updated photometric [Fe/H] calibration for isolated main sequence stars built upon a calibration sample of 69 cool dwarfs in binary systems, precise to $pm0.19,$dex, from super-solar to metal poor, over $1.51 < {rm Gaia}~(B_P-R_P) < 3.3$. Our fitted $T_{rm eff}$ and $R_star$ have median precisions of 0.8% and 1.7%, respectively and are consistent with our sample of standard stars. We use these to model the transit light curves and determine exoplanet radii for 100 candidate planets to 3.5% precision and see evidence that the planet-radius gap is also present for cool dwarfs. Our results are consistent with the sample of confirmed TESS planets, with this survey representing one of the largest uniform analyses of cool TESS candidate planet hosts to date.
It is still being debated whether the well-known metallicity - giant planet correlation for dwarf stars is also valid for giant stars. For this reason, having precise metallicities is very important. Different methods can provide different results th
We present an Ultra-Cool Dwarf (UCD) catalogue compiled from low southern Galactic latitudes and mid-plane, from a cross-correlation of the 2MASS and SuperCOSMOS surveys. The catalogue contains 246 members identified from 5042 sq. deg. within 220 deg
The transit method of exoplanet discovery and characterization has enabled numerous breakthroughs in exoplanetary science. These include measurements of planetary radii, mass-radius relationships, stellar obliquities, bulk density constraints on inte
While brown dwarfs show similarities with stars in their early life, their spin evolution is much more akin to that of planets. We have used lightcurves from the K2 mission to measure new rotation periods for 18 young brown dwarfs in the Taurus star-
The Transiting Exoplanet Survey Satellite (TESS) will be conducting a nearly all-sky photometric survey over two years, with a core mission goal to discover small transiting exoplanets orbiting nearby bright stars. It will obtain 30-minute cadence ob