ﻻ يوجد ملخص باللغة العربية
Kalantaris Geometric Modulus Principle describes the local behavior of the modulus of a polynomial. Specifically, if $p(z) = a_0 + sum_{j=k}^n a_jleft(z-z_0right)^j,;a_0a_ka_n eq 0$, then the complex plane near $z = z_0$ comprises $2k$ sectors of angle $frac{pi}{k}$, alternating between arguments of ascent (angles $theta$ where $|p(z_0 + te^{itheta})| > |p(z_0)|$ for small $t$) and arguments of descent (where the opposite inequality holds). In this paper, we generalize the Geometric Modulus Principle to holomorphic and harmonic functions. As in Kalantaris original paper, we use these extensions to give succinct, elegant new proofs of some classical theorems from analysis.
In this note, we answer a question on the extension of $L^{2}$ holomorphic functions posed by Ohsawa.
The numerical range of holomorphic mappings arises in many aspects of nonlinear analysis, finite and infinite dimensional holomorphy, and complex dynamical systems. In particular, this notion plays a crucial role in establishing exponential and produ
It is shown that the Laurent series of a holomorphic function smooth up to the boundary on a Reinhardt domain in $mathbb{C}^n$ converges unconditionally to the function in the Fr{e}chet topology of the space of functions smooth up to the boundary.
In this paper we introduce techniques from complex harmonic analysis to prove a weaker version of the Geometric Arveson-Douglas Conjecture for complex analytic subsets that is smooth on the boundary of the unit ball and intersects transversally with
Harmonic functions are natural generalizations of conformal mappings. In recent years, a lot of work have been done by some researchers who focus on harmonic starlike functions. In this paper, we aim to introduce two classes of harmonic univalent fun