ﻻ يوجد ملخص باللغة العربية
A set of unified relativistic mean-field equations of state for hyperonic compact stars recently built in [M. Fortin, Ad. R. Raduta, S. Avancini, and C. Providencia, Phys. Rev. D {bf 101}, 034017 (2020)] is used to study the thermal evolution of non-magnetized and non-rotating spherically-symmetric isolated and accreting neutron stars under different hypothesis concerning proton $S$-wave superfluidity. These equations of state have been obtained in the following way: the slope of the symmetry energy is in agreement with experimental data; the coupling constants of $Lambda$ and $Xi$-hyperons are determined from experimental hypernuclear data; uncertainties in the nucleon-$Sigma$ interaction potential are accounted for; current constraints on the lower bound of the maximum neutron star mass are satisfied. Within the considered set of equations of state, the presence of hyperons is essential for the description of the cooling/heating curves. One of the conclusions we reach is that the criterion of best agreement with observational data leads to different equations of states and proton $S$-wave superfluidity gaps when applied separately for isolated neutron stars and accreting neutron stars in quiescence. This means that at least in one situation the traditional simulation framework that we employ is not complete and/or the equations of state are inappropriate. Another result is that, considering equations of state which do not allow for nucleonic dUrca or allow for it only in very massive NS, the low luminosity of SAX J1808 requires a repulsive $Sigma$-hyperon potential in symmetric nuclear matter in the range $U_Sigma^{(N)}approx 10-30$ MeV. This range of values for $U_Sigma^{(N)} $ is also supported by the criterion of best agreement with all available data from INS and XRT.
We study the properties of hot beta-stable nuclear matter using equations of state derived within the Brueckner-Hartree-Fock approach at finite temperature including consistent three-body forces. Simple and accurate parametrizations of the finite-tem
We model the cooling of hybrid neutron stars combining a microscopic nuclear equation of state in the Brueckner-Hartree-Fock approach with different quark models. We then analyze the neutron star cooling curves predicted by the different models and s
The effect of pasta phases on the quark-hadron phase transition is investigated for a set of relativistic mean-field equations of state for both hadron and quark matter. The results of the full numerical solution with pasta phases are compared with t
The equation of state (EoS) of hot and dense matter is a fundamental input to describe static and dynamical properties of neutron stars, core-collapse supernovae and binary compact-star mergers. We review the current status of the EoS for compact obj
We explore the effects of strangeness and $Delta$ resonance in baryonic matter and compact stars within the relativistic-mean-field (RMF) models. The covariant density functional PKDD is adopted for $N$-$N$ interaction, parameters fixed based on fini