ﻻ يوجد ملخص باللغة العربية
For a given K-polystable Fano manifold X and a natural number l, we show that there exists a rational number 0 < c < 1 depending only on the dimension of X, such that $Din |-lK_X|$ is GIT-(semi/poly)stable under the action of Aut(X) if and only if the pair $(X, frac{epsilon}{l} D)$ is K-(semi/poly)stable for some rational $0 < {epsilon} < c$.
We give a lower bound of the $delta$-invariants of ample line bundles in terms of Seshadri constants. As applications, we prove the uniform K-stability of infinitely many families of Fano hypersurfaces of arbitrarily large index, as well as the unifo
We prove that every projectively normal Fano manifold in $mathbb{P}^{n+r}$ of index $1$, codimension $r$ and dimension $ngeq 10r$ is birationally superrigid and K-stable. This result was previously proved by Zhuang under the complete intersection assumption.
We present some applications of the deformation theory of toric Fano varieties to K-(semi/poly)stability of Fano varieties. First, we present two examples of K-polystable toric Fano 3-fold with obstructed deformations. In one case, the K-moduli space
We develop a general approach to prove K-stability of Fano varieties. The new theory is used to (a) prove the existence of Kahler-Einstein metrics on all smooth Fano hypersurfaces of Fano index two, (b) to compute the stability thresholds for hypersu
For (X,L) a polarized toric variety and G a torus of automorphisms of (X,L), denote by Y the GIT quotient X/G. We define a family of fully faithful functors from the category of torus equivariant reflexive sheaves on Y to the category of torus equiva