ﻻ يوجد ملخص باللغة العربية
We study unbendable rational curves, i.e., nonsingular rational curves in a complex manifold of dimension $n$ with normal bundles isomorphic to $mathcal{O}_{mathbb{P}^1}(1)^{oplus p} oplus mathcal{O}_{mathbb{P}^1}^{oplus (n-1-p)}$ for some nonnegative integer $p$. Well-known examples arise from algebraic geometry as general minimal rational curves of uniruled projective manifolds. After describing the relations between the differential geometric properties of the natural distributions on the deformation spaces of unbendable rational curves and the projective geometric properties of their varieties of minimal rational tangents, we concentrate on the case of $p=1$ and $n leq 5$, which is the simplest nontrivial situation. In this case, the families of unbendable rational curves fall essentially into two classes: Goursat type or Cartan type. Those of Goursat type arise from ordinary differential equations and those of Cartan type have special features related to contact geometry. We show that the family of lines on any nonsingular cubic 4-fold is of Goursat type, whereas the family of lines on a general quartic 5-fold is of Cartan type, in the proof of which the projective geometry of varieties of minimal rational tangents plays a key role.
We give an introduction to the theory of varieties of minimal rational tangents, emphasizing its aspect as a fusion of algebraic geometry and differential geometry, more specifically, a fusion of Mori geometry of minimal rational curves and Cartan geometry of cone structures.
A nonsingular rational curve $C$ in a complex manifold $X$ whose normal bundle is isomorphic to $${mathcal O}_{{mathbb P}^1}(1)^{oplus p} oplus {mathcal O}_{{mathbb P}^1}^{oplus q}$$ for some nonnegative integers $p$ and $q$ is called an unbendable r
In a joint work with N. Mok in 1997, we proved that for an irreducible representation $G subset {bf GL}(V),$ if a holomorphic $G$-structure exists on a uniruled projective manifold, then the Lie algebra of $G$ has nonzero prolongation. We tried to ge
In this paper, we will give a precise formula to compute delta invariants of projective bundles and projective cones of Fano type.
We provide an algorithm to check whether two rational space curves are related by a similarity. The algorithm exploits the relationship between the curvatures and torsions of two similar curves, which is formulated in a computer algebra setting. Heli