ﻻ يوجد ملخص باللغة العربية
Superradiant phase transition (SPT) in thermal equilibrium, as a fundamental concept bridging the statistical physics and electrodynamics, can offer the key resources for quantum information science. Notwithstanding its fundamental and practical significances, equilibrium SPT has never been observed in experiments since the first proposal in the 1970s. Furthermore, the existence of equilibrium SPT in the cavity quantum electrodynamics (QED) systems is still subject of ongoing debates, due to the no-go theorem induced by the so-called A2 term. Based on the platform of nuclear magnetic resonance (NMR), here we experimentally demonstrate the occurrence of equilibrium SPT beyond no-go theorem by introducing the antisqueezing effect. The mechanism relies on the antisqueezing that recovers the singularity of the ground state via exponentially enhancing the zero point fluctuation (ZPF) of system. The strong entanglement and squeezed Schrodinger cat states of spins are achieved experimentally in the superradiant phase, which may play an important role in fundamental tests of quantum theory, implementing quantum metrology and high-efficient quantum information processing. Our experiment also shows the antisqueezing-enhanced signal-to-noise rate (SNR) of NMR spectrum, providing a general method for implementing high-precision NMR experiments.
In 1981 N. Herbert proposed a gedanken experiment in order to achieve by the First Laser Amplified Superluminal Hookup (FLASH) a faster than light communication (FTL) by quantum nonlocality. The present work reports the first experimental realization
One-way quantum computing achieves the full power of quantum computation by performing single particle measurements on some many-body entangled state, known as the resource state. As single particle measurements are relatively easy to implement, the
The notorious Wigners friend thought experiment (and modifications thereof) has in recent years received renewed interest especially due to new arguments that force us to question some of the fundamental assumptions of quantum theory. In this paper,
Digital quantum simulators provide a diversified tool for solving the evolution of quantum systems with complicated Hamiltonians and hold great potential for a wide range of applications. Although much attention is paid to the unitary evolution of cl
The information encoded in a quantum system is generally spoiled by the influences of its environment, leading to a transition from pure to mixed states. Reducing the mixedness of a state is a fundamental step in the quest for a feasible implementati