ﻻ يوجد ملخص باللغة العربية
For the anticipated application of quantum computing in electronic structure simulation, we propose a systematically improvable end-to-end pipeline to overcome the resource and noise limitations prevalent on developing quantum hardware. Using density matrix embedding theory as a problem decomposition technique, and an ion-trap quantum computer, we simulate a ring of 10 hydrogen atoms without freezing any electrons. On the most aggressive decomposition setting, the original 20-qubit system is divided into 10 two-qubit subproblems. Combining this decomposition with circuit optimization and density matrix purification, we are able to accurately reproduce the potential energy curve in agreement with the full configuration interaction energy in the minimal basis set. Although problem decomposition techniques are generally approximate methods, the induced error can often be systematically suppressed by increasing the size of the subproblems. This allows our pipeline to become applicable to more-complex systems as quantum computers grow in computational capacity. Our experimental results are an early step in demonstrating how the appropriate choice of decomposition could be a critical component for enabling the quantum simulation of larger, more industrially relevant molecules using fewer computational resources.
Parallel operations in conventional computing have proven to be an essential tool for efficient and practical computation, and the story is not different for quantum computing. Indeed, there exists a large body of works that study advantages of paral
Efficiently entangling pairs of qubits is essential to fully harness the power of quantum computing. Here, we devise an exact protocol that simultaneously entangles arbitrary pairs of qubits on a trapped-ion quantum computer. The protocol requires cl
Quantum computing is currently limited by the cost of two-qubit entangling operations. In order to scale up quantum processors and achieve a quantum advantage, it is crucial to economize on the power requirement of two-qubit gates, make them robust t
The cost of enabling connectivity in Noisy-Intermediate-Scale-Quantum devices is an important factor in determining computational power. We have created a qubit routing algorithm which enables efficient global connectivity in a previously proposed tr
Fault-tolerant quantum error correction (QEC) is crucial for unlocking the true power of quantum computers. QEC codes use multiple physical qubits to encode a logical qubit, which is protected against errors at the physical qubit level. Here we use a