ترغب بنشر مسار تعليمي؟ اضغط هنا

Mixed tensor products and Capelli-type determinants

104   0   0.0 ( 0 )
 نشر من قبل Dimitar Grantcharov
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study properties of a homomorphism $rho$ from the universal enveloping algebra $U=U(mathfrak{gl}(n+1))$ to a tensor product of an algebra $mathcal D(n)$ of differential operators and $U(mathfrak{gl}(n))$. We find a formula for the image of the Capelli determinant of $mathfrak{gl}(n+1)$ under $rho$, and, in particular, of the images under $rho$ of the Gelfand generators of the center $Z(mathfrak{gl}(n+1))$ of $U$. This formula is proven by relating $rho$ to the corresponding Harish-Chandra isomorphisms, and, alternatively, by using a purely computational approach. Furthermore, we define a homomorphism from $mathcal D(n) otimes U(mathfrak{gl}(n))$ to an algebra containing $U$ as a subalgebra, so that $sigma (rho (u)) - u in G_1 U$, for all $u in U$, where $G_1 = sum_{i=0}^{n} E_{ii}$.



قيم البحث

اقرأ أيضاً

48 - Naoya Yamaguchi 2018
In this paper, we define the concept of the Study-type determinant, and we present some properties of these determinants. These properties lead to some properties of the Study determinant. The properties of the Study-type determinants are obtained us ing a commutative diagram. This diagram leads not only to these properties, but also to an inequality for the degrees of representations and to an extension of Dedekinds theorem.
Let $Z$ be the symmetric cone of $r times r$ positive definite Hermitian matrices over a real division algebra $mathbb F$. Then $Z$ admits a natural family of invariant differential operators -- the Capelli operators $C_lambda$ -- indexed by partitio ns $lambda$ of length at most $r$, whose eigenvalues are given by specialization of Knop--Sahi interpolation polynomials. In this paper we consider a double fibration $Y longleftarrow X longrightarrow Z$ where $Y$ is the Grassmanian of $r$-dimensional subspaces of $mathbb F^n $ with $n geq 2r$. Using this we construct a family of invariant differential operators $D_{lambda,s}$ on $Y$ that we refer to as quadratic Capelli operators. Our main result shows that the eigenvalues of the $D_{lambda,s}$ are given by specializations of Okounkov interpolation polynomials.
165 - Haibo Chen , Yucai Su 2019
In this paper, we realize polynomial $H$-modules $Omega(lambda,alpha,beta)$ from irreducible twisted Heisenberg-Virasoro modules $A_{alpha,beta}$. It follows from $H$-modules $Omega(lambda,alpha,beta)$ and $mathrm{Ind}(M)$ that we obtain a class of n atural non-weight tensor product modules $big(bigotimes_{i=1}^mOmega(lambda_i,alpha_i,beta_i)big)otimes mathrm{Ind}(M)$. Then we give the necessary and sufficient conditions under which these modules are irreducible and isomorphic, and also give that the irreducible modules in this class are new.
In this paper, we present a class of non-weight Virasoro modules $mathcal{M}big(V,Omega(lambda_0,alpha_0)big)otimesbigotimes_{i=1}^mOmega(lambda_i,alpha_i)$ where $Omega(lambda_i,alpha_i)$ and $mathcal{M}big(V,Omega(lambda_0,alpha_0)big)$ are irreduc ible Virasoro modules defined in cite{LZ2} and cite{LZ} respectively. The necessary and sufficient conditions for $mathcal{M}big(V,Omega(lambda_0,alpha_0)big)otimesbigotimes_{i=1}^mOmega(lambda_i,alpha_i)$ to be irreducible are obtained. Then we determine the necessary and sufficient conditions for two such irreducible Virasoro modules to be isomorphic. At last, we show that the irreducible modules in this class are new.
For each n>0, we define an algebra having many properties that one might expect to hold for a Brauer algebra of type Bn. It is defined by means of a presentation by generators and relations. We show that this algebra is a subalgebra of the Brauer alg ebra of type Dn+1 and point out a cellular structure in it. This work is a natural sequel to the introduction of Brauer algebras of type Cn, which are subalgebras of classical Brauer algebras of type A2n-1 and differ from the current ones for n>2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا