ﻻ يوجد ملخص باللغة العربية
We study the maximum matching problem in the random-order semi-streaming setting. In this problem, the edges of an arbitrary $n$-vertex graph $G=(V, E)$ arrive in a stream one by one and in a random order. The goal is to have a single pass over the stream, use $n cdot poly(log n)$ space, and output a large matching of $G$. We prove that for an absolute constant $epsilon_0 > 0$, one can find a $(2/3 + epsilon_0)$-approximate maximum matching of $G$ using $O(n log n)$ space with high probability. This breaks the natural boundary of $2/3$ for this problem prevalent in the prior work and resolves an open problem of Bernstein [ICALP20] on whether a $(2/3 + Omega(1))$-approximation is achievable.
The maximum matching problem in dynamic graphs subject to edge updates (insertions and deletions) has received much attention over the last few years; a multitude of approximation/time tradeoffs were obtained, improving upon the folklore algorithm, w
We prove a lower bound on the space complexity of two-pass semi-streaming algorithms that approximate the maximum matching problem. The lower bound is parameterized by the density of Ruzsa-Szemeredi graphs: * Any two-pass semi-streaming algorithm f
We study the problem of computing an approximate maximum cardinality matching in the semi-streaming model when edges arrive in a emph{random} order. In the semi-streaming model, the edges of the input graph G = (V,E) are given as a stream e_1, ..., e
We introduce a weighted version of the ranking algorithm by Karp et al. (STOC 1990), and prove a competitive ratio of 0.6534 for the vertex-weighted online bipartite matching problem when online vertices arrive in random order. Our result shows that
In this work, we study longest common substring, pattern matching, and wildcard pattern matching in the asymmetric streaming model. In this streaming model, we have random access to one string and streaming access to the other one. We present streami