ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge-transfer effect on local lattice distortion in a HfNbTiZr high entropy alloy

125   0   0.0 ( 0 )
 نشر من قبل Fanchao Meng
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is often assumed that atoms are hard spheres in the estimation of local lattice distortion (LLD) in high-entropy alloys (HEAs). However, our study demonstrates that the hard sphere model misses the key effect, charge transfer among atoms with different electronegativities, in the understanding of the stabilization of severely-distorted HEAs. Through the characterization and simulations of the local structure of the HfNbTiZr HEA, we found that the charge transfer effect competes with LLD to significantly reduce the average atomic-size mismatch. Our finding may form the basis for the design of severely distorted, but stable HEAs.

قيم البحث

اقرأ أيضاً

106 - Y. Tong , G. Velisa , T. Yang 2017
The atomic-level tunability that results from alloying multiple transition metals with d electrons in concentrated solid solution alloys (CSAs), including high-entropy alloys (HEAs), has produced remarkable properties for advanced energy applications , in particular, damage resistance in high-radiation environments. The key to understanding CSAs radiation performance is quantitatively characterizing their complex local physical and chemical environments. In this study, the local structure of a FeCoNiCrPd HEA is quantitatively analyzed with X-ray total scattering and extended X-ray absorption fine structure methods. Compared to FeCoNiCr and FeCoNiCrMn, FeCoNiCrPd with a quasi-random alloy structure has a strong local lattice distortion, which effectively pins radiation-induced defects. Distinct from a relaxation behavior in FeCoNiCr and FeCoNiCrMn, ion irradiation further enhanced the local lattice distortion in FeCoNiCrPd due to a preference for forming Pd-Pd atomic pairs.
Whereas exceptional mechanical and radiation performances have been found in the emergent medium- and high-entropy alloys (MEAs and HEAs), the importance of their complex atomic environment, reflecting diversity in atomic size and chemistry, to defec t transport has been largely unexplored at the atomic level. Here we adopt a local structure approach based on the atomic pair distribution function measurements in combination with density functional theory calculations to investigate a series of body-centered cubic (BCC) MEAs and HEAs. Our results demonstrate that all alloys exhibit local lattice distortions (LLD) to some extent, but an anomalous LLD, merging of the first and second atomic shells, occurs only in the Zr- and/or Hf-containing MEAs and HEAs. In addition, through the ab-initio simulations we show that charge transfer among the elements profoundly reduce the size mismatch effect. The observed competitive coexistence between LLD and charge transfer not only demonstrates the importance of the electronic effects on the local environments in MEAs and HEAs, but also provides new perspectives to in-depth understanding of the complicated defect transport in these alloys.
Recently, high-entropy alloys (HEAs) have attracted wide attention due to their extraordinary materials properties. A main challenge in identifying new HEAs is the lack of efficient approaches for exploring their huge compositional space. Ab initio c alculations have emerged as a powerful approach that complements experiment. However, for multicomponent alloys existing approaches suffer from the chemical complexity involved. In this work we propose a method for studying HEAs computationally. Our approach is based on the application of machine-learning potentials based on ab initio data in combination with Monte Carlo simulations. The high efficiency and performance of the approach are demonstrated on the prototype bcc NbMoTaW HEA. The approach is employed to study phase stability, phase transitions, and chemical short-range order. The importance of including local relaxation effects is revealed: they significantly stabilize single-phase formation of bcc NbMoTaW down to room temperature. Finally, a so-far unknown mechanism that drives chemical order due to atomic relaxation at ambient temperatures is discovered.
High-entropy alloys (HEAs) are solid solutions of multiple elements with equal atomic ratios which present an innovative pathway for de novo alloy engineering. While there exist extensive studies to ascertain the important structural aspects governin g their mechanical behaviors, elucidating the underlying deformation mechanisms still remains a challenge. Using atomistic simulations, we probe the particle rearrangements in a yielding, model HEA system to understand the structural origin of its plasticity. We find the plastic deformation is initiated by irreversible topological fluctuations which tend to spatially localize in regions termed as soft spots which consist of particles actively participating in slow vibrational motions, an observation strikingly reminiscent of nonlinear glassy rheology. Due to the varying local elastic moduli resulting from the loss of compositional periodicity, these plastic responses exhibit significant spatial heterogeneity and are found to be inversely correlated with the distribution of local electronegativity. Further mechanical loading promotes the cooperativity among these local plastic events and triggers the formation of dislocation loops. As in strained crystalline solids, different dislocation loops can further merge together and propagate as the main carrier of large-scale plastic deformation. However, the energy barriers located at the spatial regions with higher local electronegativity severely hinders the motion of dislocations. By delineating the transient mechanical response in terms of atomic configuration, our computational findings shed new light on understanding the nature of plasticity of single-phase HEA.
129 - D. Wang , L. Liu , W. Huang 2019
High-entropy alloys (HEAs), which have been intensely studied due to their excellent mechanical properties, generally refer to alloys with multiple equimolar or nearly equimolar elements. According to this definition, Si-Ge-Sn alloys with equal or co mparable concentrations of the three Group IV elements belong to the category of HEAs. As a result, the equimolar elements of Si-Ge-Sn alloys likely cause their atomic structures to exhibit the same core effects of metallic HEAs such as lattice distortion. Here we apply density functional theory (DFT) calculations to show that the SiGeSn HEA indeed exhibits a large local distortion effect. Unlike metallic HEAs, our Monte Carlo and DFT calculations show that the SiGeSn HEA exhibits no chemical short-range order due to the similar electronegativity of the constituent elements, thereby increasing the configurational entropy of the SiGeSn HEA. Hybrid density functional calculations show that the SiGeSn HEA remains semiconducting with a band gap of 0.38 eV, promising for economical and compatible mid-infrared optoelectronics applications. We then study the energetics of neutral single Si, Ge, and Sn vacancies and (expectedly) find wide distributions of vacancy formation energies, similar to those found in metallic HEAs. However, we also find anomalously small lower bounds (e.g., 0.04 eV for a Si vacancy) in the energy distributions, which arise from the bond reformation near the vacancy. Such small vacancy formation energies and their associated bond reformations retain the semiconducting behavior of the SiGeSn HEA, which may be a signature feature of a semiconducting HEA that differentiates from metallic HEAs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا