ﻻ يوجد ملخص باللغة العربية
The computational power increases over the past decades havegreatly enhanced the ability to simulate chemical reactions andunderstand ever more complex transformations. Tensor contractions are the fundamental computational building block of these simulations. These simulations have often been tied to one platform and restricted in generality by the interface provided to the user. The expanding prevalence of accelerators and researcher demands necessitate a more general approach which is not tied to specific hardware or requires contortion of algorithms to specific hardware platforms. In this paper we present COMET, a domain-specific programming language and compiler infrastructure for tensor contractions targeting heterogeneous accelerators. We present a system of progressive lowering through multiple layers of abstraction and optimization that achieves up to 1.98X speedup for 30 tensor contractions commonly used in computational chemistry and beyond.
Important computational physics problems are often large-scale in nature, and it is highly desirable to have robust and high performing computational frameworks that can quickly address these problems. However, it is no trivial task to determine whet
The ANTAREX project relies on a Domain Specific Language (DSL) based on Aspect Oriented Programming (AOP) concepts to allow applications to enforce extra functional properties such as energy-efficiency and performance and to optimize Quality of Servi
Transformer, BERT and their variants have achieved great success in natural language processing. Since Transformer models are huge in size, serving these models is a challenge for real industrial applications. In this paper, we propose LightSeq, a hi
Dijkstra observed that verifying correctness of a program is difficult and conjectured that derivation of a program hand-in-hand with its proof of correctness was the answer. We illustrate this goal-oriented approach by applying it to the domain of d
Quantifying simulation uncertainties is a critical component of rigorous predictive simulation. A key component of this is forward propagation of uncertainties in simulation input data to output quantities of interest. Typical approaches involve repe