ﻻ يوجد ملخص باللغة العربية
We analytically calculate the electronic friction tensor for a molecule near a metal surface in the case that the electronic Hamiltonian is complex-valued, e.g. the case that there is spin-orbit coupling and/or an external magnetic field. In such a case, {em even at equilibrium}, we show that the friction tensor is not symmetric. Instead, the tensor is the real-valued sum of one positive definite tensor (corresponding to dissipation) plus one antisymmetric tensor (corresponding to a Berry pseudomagnetic force). Moreover, we find that this Berry force can be much larger than the dissipational force, suggesting the possibility of strongly spin-polarized chemicurrents or strongly spin-dependent rate constants for systems with spin-orbit coupling.
The topological nodal-line semimetals (NLSMs) possess a loop of Dirac nodes in the k space with linear dispersion, different from the point nodes in Dirac/Weyl semimetals. While the quantum transport associated with the topologically nontrivial Dirac
We report strong unidirectional anisotropy in bulk polycrystalline B20 FeGe measured by ferromagnetic resonance spectroscopy. Bulk and micron-sized samples were produced and analytically characterized. FeGe is a B20 compound with inherent Dzyaloshins
The discovery of an ever increasing family of atomic layered magnetic materials, together with the already established vast catalogue of strong spin-orbit coupling (SOC) and topological systems, calls for some guiding principles to tailor and optimiz
We extend a tight-binding method to include the effects of spin-orbit coupling, and apply it to the study of the electronic properties of the actinide elements Th, U, and Pu. These tight-binding parameters are determined for the fcc crystal structure
We explore the influence of contact interactions on a synthetically spin-orbit coupled system of two ultracold trapped atoms. Even though the system we consider is bosonic, we show that a regime exists in which the competition between the contact and