ترغب بنشر مسار تعليمي؟ اضغط هنا

IR photofragmentation of the Phenyl Cation: Spectroscopy and Fragmentation Pathways

84   0   0.0 ( 0 )
 نشر من قبل Alessandra Candian
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the gas-phase infrared spectra of the phenyl cation, phenylium, in its perprotio C$_6$H$_5^+$ and perdeutero C$_6$D$_5^+$ forms, in the 260-1925 cm$^{-1}$ (5.2-38 $mu$m) spectral range, and investigate the observed photofragmentation. The spectral and fragmentation data were obtained using Infrared Multiple Photon Dissociation (IRMPD) spectroscopy within a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FTICR MS) located inside the cavity of the free electron laser FELICE (Free Electron Laser for Intra-Cavity Experiments). The $^1$A$_1$ singlet nature of the phenylium ion is ascertained by comparison of the observed IR spectrum with DFT calculations, using both harmonic and anharmonic frequency calculations. To investigate the observed loss of predominantly [2C,nH] (n=2-4) fragments, we explored the potential energy surface (PES) to unravel possible isomerization and fragmentation reaction pathways. The lowest energy pathways toward fragmentation include direct H elimination, and a combination of facile ring-opening mechanisms ($leq2.4$ eV), followed by elimination of H or CCH$_2$. Energetically, all H-loss channels found are more easily accessible than CCH$_2$-loss. Calculations of the vibrational density of states for the various intermediates show that at high internal energies, ring opening is the thermodynamically the most advantageous, eliminating direct H-loss as a competing process. The observed loss of primarily [2C,2H] can be explained through entropy calculations that show favored loss of [2C,2H] at higher internal energies.

قيم البحث

اقرأ أيضاً

86 - Pavol Jusko 2018
The fragment of the 1-methylpyrene cation, C17H11+, is expected to exist in two isomeric forms, 1-pyrenemethylium PyrCH2+ and the tropylium containing species PyrC7+ . We measured the infrared (IR) action spectrum of cold C17H11+ tagged with Ne using a cryogenic ion trap instrument coupled to the FELIX laser. Comparison of the experimental data with density functional theory calculations allows us to identify the PyrCH2+ isomer in our experiments. The IR Multi-Photon Dissociation spectrum was also recorded following the C2H2 loss channel. Its analysis suggests combined effects of anharmonicity and isomerisation while heating the trapped ions, as shown by molecular dynamics simulations.
Full-dimensional semiclassical dynamical calculations are reported for the photofragmentation of isocyanic acid in the S1 state. These calculations, performed for the first time, allow to closely reproduce the key features of high-resolution imaging measurements at photolysis wavelengths of 201 and 210 nm while providing insight into the underlying dissociation mechanism.
Exploring molecular breakup processes induced by light-matter interactions has both fundamental and practical implications. However, it remains a challenge to elucidate the underlying reaction mechanism in the strong field regime, where the potential s of the reactant are modified dramatically. Here, we perform a theoretical analysis combined with a time-dependent wavepacket calculation to show how a strong ultrafast laser field affects the photofragment products. As an example, we examine the photochemical reaction of breaking up the molecule NaI into the neutral atoms Na and I, which due to inherent nonadiabatic couplings is indirectly formed in a stepwise fashion via the reaction intermediate NaI. By analyzing the angular dependencies of fragment distributions, we are able to identify the reaction intermediate NaI from the weak to the strong field-induced nonadiabatic regimes. Furthermore, the energy levels of NaI can be extracted from the quantum interference patterns of the transient photofragment momentum distribution.
Rotational-vibrational transitions of the fundamental vibrational modes of the $^{12}$C$^{14}$N$^+$ and $^{12}$C$^{15}$N$^+$ cations have been observed for the first time using a cryogenic ion trap apparatus with an action spectroscopy scheme. The li nes P(3) to R(3) of $^{12}$C$^{14}$N$^+$ and R(1) to R(3) of $^{12}$C$^{15}$N$^+$ have been measured, limited by the trap temperature of approximately 4 K and the restricted tuning range of the infrared laser. Spectroscopic parameters are presented for both isotopologues, with band origins at 2000.7587(1) and 1970.321(1) cm$^{-1}$, respectively, as well as an isotope independent fit combining the new and the literature data.
While powerful techniques exist to accurately account for anharmonicity in vibrational molecular spectroscopy, they are computationally very expensive and cannot be routinely employed for large species and/or at non- zero vibrational temperatures. Mo tivated by the study of Polycyclic Aromatic Hydrocarbon (PAH) emission in space, we developed a new code, which takes into account all modes and can describe all IR transitions including bands becoming active due to resonances as well as overtones, combination and difference bands. In this article, we describe the methodology that was implemented and discuss how the main difficulties were overcome, so as to keep the problem tractable. Benchmarking with high-level calculations was performed on a small molecule. We carried out specific convergence tests on two prototypical PAHs, pyrene (C$_{16}$H$_{10}$) and coronene (C$_{24}$H$_{12}$), aiming at optimising tunable parameters to achieve both acceptable accuracy and computational costs for this class of molecules. We then report the results obtained at 0 K for pyrene and coronene, comparing the calculated spectra with available experimental data. The theoretical band positions were found to be significantly improved compared to harmonic Density Functional Theory (DFT) calculations. The band intensities are in reasonable agreement with experiments, the main limitation being the accuracy of the underlying calculations of the quartic force field. This is a first step towards calculating moderately high-temperature spectra of PAHs and other similarly rigid molecules using Monte Carlo sampling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا