ﻻ يوجد ملخص باللغة العربية
We present the gas-phase infrared spectra of the phenyl cation, phenylium, in its perprotio C$_6$H$_5^+$ and perdeutero C$_6$D$_5^+$ forms, in the 260-1925 cm$^{-1}$ (5.2-38 $mu$m) spectral range, and investigate the observed photofragmentation. The spectral and fragmentation data were obtained using Infrared Multiple Photon Dissociation (IRMPD) spectroscopy within a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FTICR MS) located inside the cavity of the free electron laser FELICE (Free Electron Laser for Intra-Cavity Experiments). The $^1$A$_1$ singlet nature of the phenylium ion is ascertained by comparison of the observed IR spectrum with DFT calculations, using both harmonic and anharmonic frequency calculations. To investigate the observed loss of predominantly [2C,nH] (n=2-4) fragments, we explored the potential energy surface (PES) to unravel possible isomerization and fragmentation reaction pathways. The lowest energy pathways toward fragmentation include direct H elimination, and a combination of facile ring-opening mechanisms ($leq2.4$ eV), followed by elimination of H or CCH$_2$. Energetically, all H-loss channels found are more easily accessible than CCH$_2$-loss. Calculations of the vibrational density of states for the various intermediates show that at high internal energies, ring opening is the thermodynamically the most advantageous, eliminating direct H-loss as a competing process. The observed loss of primarily [2C,2H] can be explained through entropy calculations that show favored loss of [2C,2H] at higher internal energies.
The fragment of the 1-methylpyrene cation, C17H11+, is expected to exist in two isomeric forms, 1-pyrenemethylium PyrCH2+ and the tropylium containing species PyrC7+ . We measured the infrared (IR) action spectrum of cold C17H11+ tagged with Ne using
Full-dimensional semiclassical dynamical calculations are reported for the photofragmentation of isocyanic acid in the S1 state. These calculations, performed for the first time, allow to closely reproduce the key features of high-resolution imaging
Exploring molecular breakup processes induced by light-matter interactions has both fundamental and practical implications. However, it remains a challenge to elucidate the underlying reaction mechanism in the strong field regime, where the potential
Rotational-vibrational transitions of the fundamental vibrational modes of the $^{12}$C$^{14}$N$^+$ and $^{12}$C$^{15}$N$^+$ cations have been observed for the first time using a cryogenic ion trap apparatus with an action spectroscopy scheme. The li
While powerful techniques exist to accurately account for anharmonicity in vibrational molecular spectroscopy, they are computationally very expensive and cannot be routinely employed for large species and/or at non- zero vibrational temperatures. Mo