ترغب بنشر مسار تعليمي؟ اضغط هنا

Laser-assisted atom probe tomography of c-plane and m-plane InGaN test structures

89   0   0.0 ( 0 )
 نشر من قبل Norman Sanford
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. A. Sanford




اسأل ChatGPT حول البحث

Laser-assisted atom probe tomography (APT) was used to measure the indium mole fraction x of c-plane, MOCVD-grown, GaN/In(x)Ga(1-x)N/GaN test structures and the results were compared with Rutherford backscattering analysis (RBS). Four sample types were examined with (RBS determined) x = 0.030, 0.034, 0.056, and 0.112. The respective In(x)Ga(1-x)N layer thicknesses were 330 nm, 327 nm, 360 nm, and 55 nm. APT data were collected at (fixed) laser pulse energy (PE) selected within the range of (2-1000) fJ. Sample temperatures were = 54 K. PE within (2-50) fJ yielded x values that agreed with RBS (within uncertainty) and were comparatively insensitive to region-of-interest (ROI) geometry and orientation. By contrast, approximate stoichiometry was only found in the GaN portions of the samples provided PE was within (5-20) fJ and the analyses were confined to cylindrical ROIs (of diameters =20 nm) that were coaxial with the specimen tips. m-plane oriented tips were derived from c-axis grown, core-shell, GaN/In(x)Ga(1-x)N nanorod heterostructures. Compositional analysis along [0 0 0 1] (transverse to the long axis of the tip), of these m-plane samples revealed a spatial asymmetry in charge-state ratio (CSR) and a corresponding asymmetry in the resultant tip shape along this direction; no asymmetry in CSR or tip shape was observed for analysis along [-1 2-1 0]. Simulations revealed that the electric field strength at the tip apex was dominated by the presence of a p-type inversion layer, which developed under typical tip-electrode bias conditions for the n-type doping levels considered. Finally, both c-plane and m-plane sample types showed depth-dependent variations in absolute ion counts that depended upon ROI placement.

قيم البحث

اقرأ أيضاً

150 - Shi. Qiu , Changxi Zheng , Qi Zhou 2020
Understanding the structure and chemical composition at the liquid-nanoparticle (NP) interface is crucial for a wide range of physical, chemical and biological processes. In this study, direct imaging of the liquid-NP interface by atom probe tomograp hy (APT) is reported for the first time, which reveals the distributions and the interactions of key atoms and molecules in this critical domain. The APT specimen is prepared by controlled graphene encapsulation of the solution containing nanoparticles on a metal tip, with an end radius in the range of 50 nm to allow field ionization and evaporation. Using Au nanoparticles (AuNPs) in suspension as an example, analysis of the mass spectrum and three-dimensional (3D) chemical maps from APT provides a detailed image of the water-gold interface with near-atomic resolution. At the water-gold interface, the formation of an electrical double layer (EDL) rich in water (H2O) molecules has been observed, which results from the charge from the binding between the trisodium-citrate layer and the AuNP. In the bulk water region, the density of reconstructed H2O has been shown to be consistent, reflecting a highly packed density of H2O molecules after graphene encapsulation. This study is the first demonstration of direct imaging of liquid-NP interface using APT with results providing an atom-by-atom 3D dissection of the liquid-NP interface.
Atom probe tomography (APT) analysis conditions play a major role in the composition measurement accuracy. Preferential evaporation, which significantly biases apparent composition, more than other well-known phenomena in APT, is strongly connected t o those analysis conditions. One way to optimize them, in order to have the most accurate measurement, is therefore to be able to predict and then to estimate their influence on the apparent composition. An analytical model is proposed to quantify the preferential evaporation. This model is applied to three different alloys: NiCu, FeCrNi and FeCu. The model explains not only the analysis temperature dependence, as in already existing model, but also the dependence to the pulse fraction and the pulse frequency. Moreover, the model can also provide energetic constant directly linked to energy barrier, required to field evaporate atom from the sample surface. 2
Using in situ grazing-incidence x-ray scattering, we have measured the diffuse scattering from islands that form during layer-by-layer growth of GaN by metal-organic vapor phase epitaxy on the (1010) m-plane surface. The diffuse scattering is extende d in the (0001) in-plane direction in reciprocal space, indicating a strong anisotropy with islands elongated along [1 $overline{2}$ 10] and closely spaced along [0001]. This is confirmed by atomic force microscopy of a quenched sample. Islands were characterized as a function of growth rate G and temperature. The island spacing along [0001] observed during the growth of the first monolayer obeys a power-law dependence on growth rate G$^{-n}$, with an exponent $n = 0.25 pm 0.02$. Results are in agreement with recent kinetic Monte Carlo simulations, indicating that elongated islands result from the dominant anisotropy in step edge energy and not from surface diffusion anisotropy. The observed power-law exponent can be explained using a simple steady-state model, which gives n = 1/4.
In this paper we present a detailed analysis of the structural, electronic, and optical properties of an $m$-plane (In,Ga)N/GaN quantum well structure grown by metal organic vapor phase epitaxy. The sample has been structurally characterized by x-ray diffraction, scanning transmission electron microscopy, and 3D atom probe tomography. The optical properties of the sample have been studied by photoluminescence (PL), time-resolved PL spectroscopy, and polarized PL excitation spectroscopy. The PL spectrum consisted of a very broad PL line with a high degree of optical linear polarization. To understand the optical properties we have performed atomistic tight-binding calculations, and based on our initial atom probe tomography data, the model includes the effects of strain and built-in field variations arising from random alloy fluctuations. Furthermore, we included Coulomb effects in the calculations. Our microscopic theoretical description reveals strong hole wave function localization effects due to random alloy fluctuations, resulting in strong variations in ground state energies and consequently the corresponding transition energies. This is consistent with the experimentally observed broad PL peak. Furthermore, when including Coulomb contributions in the calculations we find strong exciton localization effects which explain the form of the PL decay transients. Additionally, the theoretical results confirm the experimentally observed high degree of optical linear polarization. Overall, the theoretical data are in very good agreement with the experimental findings, highlighting the strong impact of the microscopic alloy structure on the optoelectronic properties of these systems.
Alnico is a prime example of a finely tuned nanostructure whose magnetic properties are intimately connected to magnetic annealing (MA) during spinodal transformation and subsequent lower temperature annealing (draw) cycles. Using a combination of tr ansmission electron microscopy and atom probe tomography, we show how these critical processing steps affect the local composition and nanostructure evolution with impact on magnetic properties. The nearly 2-fold increase of intrinsic coercivity ($H_text{ci}$) during the draw cycle is not adequately explained by chemical refinement of the spinodal phases. Instead, increased Fe-Co phase ($alpha_1$) isolation, development of Cu-rich spheres/rods/blades and additional $alpha_1$ rod precipitation that occurs during the MA and draw, likely play a key role in $H_text{ci}$ enhancement. Chemical ordering of the Al-Ni-phase ($alpha_2$) and formation of Ni-rich ($alpha_3$) may also contribute. Unraveling of the subtle effect of these nano-scaled features is crucial to understanding on how to improve shape anisotropy in alnico magnets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا