ﻻ يوجد ملخص باللغة العربية
This paper is concerned with system of magnetic effected piezoelectric beams with interior time-varying delay and time-dependent weights, in which the beam is clamped at the two side points subject to a single distributed state feedback controller with a time-varying delay. By combining the semigroup theory with Katos variable norm technique, we obtain the existence and uniqueness of solution. By imposing appropriate assumptions on the time-varying delay term and time-dependent weights, we introduce suitable perturbed Lyapunov functional to obtain exponential stability estimates.
This paper focuses on a model for opinion dynamics, where the influence weights of agents evolve in time. We formulate a control problem of consensus type, in which the objective is to drive all agents to a final target point under suitable control c
In this paper, we study a model for opinion dynamics where the influence weights of agents evolve in time via an equation which is coupled with the opinions evolution. We explore the natural question of the large population limit with two approaches:
In this paper, we derive the mean-field limit of a collective dynamics model with time-varying weights, for weight dynamics that preserve the total mass of the system as well as indistinguishability of the agents. The limit equation is a transport eq
The paper is concerned with the exponential attractors for the viscoelastic wave model in $Omegasubset mathbb R^3$: $$u_{tt}-h_t(0)Delta u-int_0^inftypartial_sh_t(s)Delta u(t-s)mathrm ds+f(u)=h,$$ with time-dependent memory kernel $h_t(cdot)$ which
In this work, a Timoshenko system of type III of thermoelasticity with frictional versus viscoelastic under Dirichlet-Dirichlet-Neumann boundary conditions was considered. By exploiting energy method to produce a suitable Lyapunov functional, we esta