ﻻ يوجد ملخص باللغة العربية
In the context of stochastic homogenization, the Bourgain-Spencer conjecture states that the ensemble-averaged solution of a divergence-form linear elliptic equation with random coefficients admits an intrinsic description in terms of higher-order homogenized equations with an accuracy four times better than the almost sure solution itself. While previous rigorous results were restricted to a perturbative regime with small ellipticity ratio, we prove the first half of this conjecture for the first time in a non-perturbative setting. Our approach involves the construction of a new corrector theory in stochastic homogenization: while only a bounded number of correctors can be constructed as stationary $L^2$ random fields, we show that twice as many stationary correctors can be defined in a Schwartz-like distributional sense on the probability space.
This contribution is concerned with the effective viscosity problem, that is, the homogenization of the steady Stokes system with a random array of rigid particles, for which the main difficulty is the treatment of close particles. Standard approache
Corrector estimates constitute a key ingredient in the derivation of optimal convergence rates via two-scale expansion techniques in homogenization theory of random uniformly elliptic equations. The present work follows up - in terms of corrector est
This work is devoted to the asymptotic behavior of eigenvalues of an elliptic operator with rapidly oscillating random coefficients on a bounded domain with Dirichlet boundary conditions. A sharp convergence rate is obtained for isolated eigenvalues
We derive optimal-order homogenization rates for random nonlinear elliptic PDEs with monotone nonlinearity in the uniformly elliptic case. More precisely, for a random monotone operator on $mathbb{R}^d$ with stationary law (i.e. spatially homogeneous
This work develops a quantitative homogenization theory for random suspensions of rigid particles in a steady Stokes flow, and completes recent qualitative results. More precisely, we establish a large-scale regularity theory for this Stokes problem,