ترغب بنشر مسار تعليمي؟ اضغط هنا

A Bayesian cohort component projection model to estimate adult populations at the subnational level in data-sparse settings

65   0   0.0 ( 0 )
 نشر من قبل Monica Alexander
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Accurate estimates of subnational populations are important for policy formulation and monitoring population health indicators. For example, estimates of the number of women of reproductive age are important to understand the population at risk to maternal mortality and unmet need for contraception. However, in many low-income countries, data on population counts and components of population change are limited, and so levels and trends subnationally are unclear. We present a Bayesian constrained cohort component model for the estimation and projection of subnational populations. The model builds on a cohort component projection framework, incorporates census data and estimates from the United Nations World Population Prospects, and uses characteristic mortality schedules to obtain estimates of population counts and the components of population change, including internal migration. The data required as inputs to the model are minimal and available across a wide range of countries, including most low-income countries. The model is applied to estimate and project populations by county in Kenya for 1979-2019, and validated against the 2019 Kenyan census.



قيم البحث

اقرأ أيضاً

Reliable mortality estimates at the subnational level are essential in the study of health inequalities within a country. One of the difficulties in producing such estimates is the presence of small populations, where the stochastic variation in deat h counts is relatively high, and so the underlying mortality levels are unclear. We present a Bayesian hierarchical model to estimate mortality at the subnational level. The model builds on characteristic age patterns in mortality curves, which are constructed using principal components from a set of reference mortality curves. Information on mortality rates are pooled across geographic space and smoothed over time. Testing of the model shows reasonable estimates and uncertainty levels when the model is applied to both simulated data which mimic US counties, and real data for French departments. The estimates produced by the model have direct applications to the study of subregional health patterns and disparities.
We consider the problem of probabilistic projection of the total fertility rate (TFR) for subnational regions. We seek a method that is consistent with the UNs recently adopted Bayesian method for probabilistic TFR projections for all countries, and works well for all countries. We assess various possible methods using subnational TFR data for 47 countries. We find that the method that performs best in terms of out-of-sample predictive performance and also in terms of reproducing the within-country correlation in TFR is a method that scales the national trajectory by a region-specific scale factor that is allowed to vary slowly over time. This supports the hypothesis of Watkins (1990, 1991) that within-country TFR converges over time in response to country-specific factors, and extends the Watkins hypothesis to the last 50 years and to a much wider range of countries around the world.
Existing methods to estimate the prevalence of chronic hepatitis C (HCV) in New York City (NYC) are limited in scope and fail to assess hard-to-reach subpopulations with highest risk such as injecting drug users (IDUs). To address these limitations, we employ a Bayesian multi-parameter evidence synthesis model to systematically combine multiple sources of data, account for bias in certain data sources, and provide unbiased HCV prevalence estimates with associated uncertainty. Our approach improves on previous estimates by explicitly accounting for injecting drug use and including data from high-risk subpopulations such as the incarcerated, and is more inclusive, utilizing ten NYC data sources. In addition, we derive two new equations to allow age at first injecting drug use data for former and current IDUs to be incorporated into the Bayesian evidence synthesis, a first for this type of model. Our estimated overall HCV prevalence as of 2012 among NYC adults aged 20-59 years is 2.78% (95% CI 2.61-2.94%), which represents between 124,900 and 140,000 chronic HCV cases. These estimates suggest that HCV prevalence in NYC is higher than previously indicated from household surveys (2.2%) and the surveillance system (2.37%), and that HCV transmission is increasing among young injecting adults in NYC. An ancillary benefit from our results is an estimate of current IDUs aged 20-59 in NYC: 0.58% or 27,600 individuals.
In this guide, we present how to perform constraint-based causal discovery using three popular software packages: pcalg (with add-ons tpc and micd), bnlearn, and TETRAD. We focus on how these packages can be used with observational data and in the pr esence of mixed data (i.e., data where some variables are continuous, while others are categorical), a known time ordering between variables, and missing data. Throughout, we point out the relative strengths and limitations of each package, as well as give practical recommendations. We hope this guide helps anyone who is interested in performing constraint-based causal discovery on their data.
In order to implement disease-specific interventions in young age groups, policy makers in low- and middle-income countries require timely and accurate estimates of age- and cause-specific child mortality. High quality data is not available in settin gs where these interventions are most needed, but there is a push to create sample registration systems that collect detailed mortality information. Current methods that estimate mortality from this data employ multistage frameworks without rigorous statistical justification that separately estimate all-cause and cause-specific mortality and are not sufficiently adaptable to capture important features of the data. We propose a flexible Bayesian modeling framework to estimate age- and cause-specific child mortality from sample registration data. We provide a theoretical justification for the framework, explore its properties via simulation, and use it to estimate mortality trends using data from the Maternal and Child Health Surveillance System in China.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا