ﻻ يوجد ملخص باللغة العربية
Accurate estimates of subnational populations are important for policy formulation and monitoring population health indicators. For example, estimates of the number of women of reproductive age are important to understand the population at risk to maternal mortality and unmet need for contraception. However, in many low-income countries, data on population counts and components of population change are limited, and so levels and trends subnationally are unclear. We present a Bayesian constrained cohort component model for the estimation and projection of subnational populations. The model builds on a cohort component projection framework, incorporates census data and estimates from the United Nations World Population Prospects, and uses characteristic mortality schedules to obtain estimates of population counts and the components of population change, including internal migration. The data required as inputs to the model are minimal and available across a wide range of countries, including most low-income countries. The model is applied to estimate and project populations by county in Kenya for 1979-2019, and validated against the 2019 Kenyan census.
Reliable mortality estimates at the subnational level are essential in the study of health inequalities within a country. One of the difficulties in producing such estimates is the presence of small populations, where the stochastic variation in deat
We consider the problem of probabilistic projection of the total fertility rate (TFR) for subnational regions. We seek a method that is consistent with the UNs recently adopted Bayesian method for probabilistic TFR projections for all countries, and
Existing methods to estimate the prevalence of chronic hepatitis C (HCV) in New York City (NYC) are limited in scope and fail to assess hard-to-reach subpopulations with highest risk such as injecting drug users (IDUs). To address these limitations,
In this guide, we present how to perform constraint-based causal discovery using three popular software packages: pcalg (with add-ons tpc and micd), bnlearn, and TETRAD. We focus on how these packages can be used with observational data and in the pr
In order to implement disease-specific interventions in young age groups, policy makers in low- and middle-income countries require timely and accurate estimates of age- and cause-specific child mortality. High quality data is not available in settin