ﻻ يوجد ملخص باللغة العربية
The shell type supernova remnant (SNR) Cas A exhibits structures at nearly all angular scales. Previous studies show the angular power spectrum $(C_{ell})$ of the radio emission to be a broken power law, consistent with MHD turbulence. The break has been identified with the transition from 2D to 3D turbulence at the angular scale corresponding to the shell thickness. Alternatively, this can also be explained as 2D inverse cascade driven by energy injection from knot-shock interactions. Here we present $C_{ell}$ measured from archival VLA $5$GHz (C band) data, and Chandra X-ray data in the energy ranges ${rm A}=0.6-1.0 , , {rm keV}$ and ${rm B} =4.2-6.0 , , {rm keV}$, both of which are continuum dominated. The different emissions all trace fluctuations in the underlying plasma and possibly also the magnetic field, and we expect them to be correlated. We quantify this using the cross $C_{ell}$ between the different emissions. We find that X-ray B is strongly correlated with both radio and X-ray A, however X-ray A is only very weakly correlated with radio. This supports a picture where X-ray A is predominantly thermal bremsstrahlung whereas X-ray B is a composite of thermal bremsstrahlung and non-thermal synchrotron emission. The various $C_{ell}$ measured here, all show a broken power law behaviour. However, the slopes are typically shallower than those in radio and the position of the break also corresponds to smaller angular scales. These findings provide observational inputs regarding the nature of turbulence and the emission mechanisms in Cas A.
Supernova remnants (SNRs) have a variety of overall morphology as well as rich structures over a wide range of scales. Quantitative study of these structures can potentially reveal fluctuations of density and magnetic field originating from the inter
We present the Suzaku results of a supernova remnant (SNR), G359.1-0.5 in the direction of the Galactic center region. From the SNR, we find prominent K-shell lines of highly ionized Si and S ions, together with unusual structures at 2.5-3.0 and 3.1-
Thermal Sunyaev-Zeldovich (tSZ) effect and X-ray emission from galaxy clusters have been extensively used to constrain cosmological parameters. These constraints are highly sensitive to the relations between cluster masses and observables (tSZ and X-
We present newly obtained X-ray and radio observations of Tychos supernova remnant using {it Chandra} and the Karl G. Jansky Very Large Array in 2015 and 2013/14, respectively. When combined with earlier epoch observations by these instruments, we no
Resonance scattering (RS) is an important process in astronomical objects, because it affects measurements of elemental abundances and distorts surface brightness of the object. It is predicted that RS can occur in plasmas of supernova remnants (SNRs