ترغب بنشر مسار تعليمي؟ اضغط هنا

The KM3NeT potential for the next core-collapse supernova observation with neutrinos

134   0   0.0 ( 0 )
 نشر من قبل Marta Colomer Molla
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The KM3NeT research infrastructure is under construction in the Mediterranean Sea. It consists of two water Cherenkov neutrino detectors, ARCA and ORCA, aimed at neutrino astrophysics and oscillation research, respectively. Instrumenting a large volume of sea water with $sim$ 6,200 optical modules comprising a total of $sim$ 200,000 photomultiplier tubes, KM3NeT will achieve sensitivity to $sim$ 10 MeV neutrinos from Galactic and near-Galactic core-collapse supernovae through the observation of coincident hits in photomultipliers above the background. In this paper, the sensitivity of KM3NeT to a supernova explosion is estimated from detailed analyses of background data from the first KM3NeT detection units and simulations of the neutrino signal. The KM3NeT observational horizon (for a $5,sigma$ discovery) covers essentially the Milky-Way and for the most optimistic model, extends to the Small Magellanic Cloud ($sim$ 60 kpc). Detailed studies of the time profile of the neutrino signal allow assessment of the KM3NeT capability to determine the arrival time of the neutrino burst with a few milliseconds precision for sources up to 5$-$8 kpc away, and detecting the peculiar signature of the standing accretion shock instability if the core-collapse supernova explosion happens closer than 3$-$5 kpc, depending on the progenitor mass. KM3NeTs capability to measure the neutrino flux spectral parameters is also presented.



قيم البحث

اقرأ أيضاً

The KM3NeT research infrastructure is under construction in the Mediterranean Sea. KM3NeT will study atmospheric and astrophysical neutrinos with two multi-purpose neutrino detectors, ARCA and ORCA, primarily aimed at the GeV-PeV energy scale. Thanks to the multi-photomultiplier tube design of the digital optical modules, KM3NeT is capable of detecting the neutrino burst from a Galactic or near-Galactic core-collapse supernova. This potential is already exploitable with the first detection units deployed in the sea. This paper describes the real-time implementation of the supernova neutrino search, operating on the two KM3NeT detectors since the first months of 2019. A quasi-online astronomy analysis is introduced to study the time profile of the detected neutrinos for especially significant events. The mechanism of generation and distribution of alerts, as well as the integration into the SNEWS and SNEWS 2.0 global alert systems are described. The approach for the follow-up of external alerts with a search for a neutrino excess in the archival data is defined. Finally, an overview of the current detector capabilities and a report after the first two years of operation are given.
205 - Amol Dighe 2007
The neutrino burst from a galactic supernova can help determine the neutrino mass hierarchy and $theta_{13}$, and provide crucial information about supernova astrophysics. Here we review our current understanding of the neutrino burst, flavor
RES-NOVA is a new proposed experiment for the investigation of astrophysical neutrino sources with archaeological Pb-based cryogenic detectors. RES-NOVA will exploit Coherent Elastic neutrino-Nucleus Scattering (CE$ u$NS) as detection channel, thus i t will be equally sensitive to all neutrino flavors produced by Supernovae (SNe). RES-NOVA with only a total active volume of (60 cm)$^3$ and an energy threshold of 1 keV will probe the entire Milky Way Galaxy for (failed) core-collapse SNe with $> 3 sigma$ detection significance. The high detector modularity makes RES-NOVA ideal also for reconstructing the main parameters (e.g. average neutrino energy, star binding energy) of SNe occurring in our vicinity, without deterioration of the detector performance caused by the high neutrino interaction rate. For the first time, distances $<3$ kpc can be surveyed, similarly to the ones where all known past galactic SNe happened. We discuss the RES-NOVA potential, accounting for a realistic setup, considering the detector geometry, modularity and background level in the region of interest. We report on the RES-NOVA background model and on the sensitivity to SN neutrinos as a function of the distance travelled by neutrinos.
The next time a core-collapse supernova (SN) explodes in our galaxy, vari- ous detectors will be ready and waiting to detect its emissions of gravitational waves (GWs) and neutrinos. Current numerical simulations have successfully introduced multi-di mensional effects to produce exploding SN models, but thus far the explosion mechanism is not well understood. In this paper, we focus on an investigation of progenitor core rotation via comparison of the start time of GW emission and that of the neutronization burst. The GW and neutrino de- tectors are assumed to be, respectively, the KAGRA detector and a co-located gadolinium-loaded water Cherenkov detector, either EGADS or GADZOOKS!. Our detection simulation studies show that for a nearby supernova (0.2 kpc) we can confirm the lack of core rotation close to 100% of the time, and the presence of core rotation about 90% of the time. Using this approach there is also po- tential to confirm rotation for considerably more distant Milky Way supernova explosions.
The recent discovery that the Fe-K line luminosities and energy centroids observed in nearby SNRs are a strong discriminant of both progenitor type and circumstellar environment has implications for our understanding of supernova progenitor evolution . Using models for the chemical composition of core-collapse supernova ejecta, we model the dynamics and thermal X-ray emission from shocked ejecta and circumstellar material, modeled as an $r^{-2}$ wind, to ages of 3000 years. We compare the X-ray spectra expected from these models to observations made with the Suzaku satellite. We also model the dynamics and X-ray emission from Type Ia progenitor models. We find a clear distinction in Fe-K line energy centroid between core-collapse and Type Ia models. The core-collapse supernova models predict higher Fe-K line centroid energies than the Type Ia models, in agreement with observations. We argue that the higher line centroids are a consequence of the increased densities found in the circumstellar environment created by the expansion of the slow-moving wind from the massive progenitors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا