ترغب بنشر مسار تعليمي؟ اضغط هنا

Computer-assisted estimates for Birkhoff normal forms

279   0   0.0 ( 0 )
 نشر من قبل Chiara Caracciolo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Birkhoff normal forms are commonly used in order to ensure the so called effective stability in the neighborhood of elliptic equilibrium points for Hamiltonian systems. From a theoretical point of view, this means that the eventual diffusion can be bounded for time intervals that are exponentially large with respect to the inverse of the distance of the initial conditions from such equilibrium points. Here, we focus on an approach that is suitable for practical applications: we extend a rather classical scheme of estimates for both the Birkhoff normal forms to any finite order and their remainders. This is made for providing explicit lower bounds of the stability time (that are valid for initial conditions in a fixed open ball), by using a fully rigorous computer-assisted procedure. We apply our approach in two simple contexts that are widely studied in Celestial Mechanics: the Henon-Heiles model and the Circular Planar Restricted Three-Body Problem. In the latter case, we adapt our scheme of estimates for covering also the case of resonant Birkhoff normal forms and, in some concrete models about the motion of the Trojan asteroids, we show that it can be more advantageous with respect to the usual non-resonant ones.



قيم البحث

اقرأ أيضاً

Integrable or near-integrable magnetic fields are prominent in the design of plasma confinement devices. Such a field is characterized by the existence of a singular foliation consisting entirely of invariant submanifolds. A regular leaf, known as a flux surface,of this foliation must be diffeomorphic to the two-torus. In a neighborhood of a flux surface, it is known that the magnetic field admits several exact, smooth normal forms in which the field lines are straight. However, these normal forms break down near singular leaves including elliptic and hyperbolic magnetic axes. In this paper, the existence of exact, smooth normal forms for integrable magnetic fields near elliptic and hyperbolic magnetic axes is established. In the elliptic case, smooth near-axis Hamada and Boozer coordinates are defined and constructed. Ultimately, these results establish previously conjectured smoothness properties for smooth solutions of the magnetohydrodynamic equilibrium equations. The key arguments are a consequence of a geometric reframing of integrability and magnetic fields; that they are presymplectic systems.
A formal series transformation to Birkhoff-Gustavson normal form is obtained for toroidal magnetic field configurations in the neighborhood of a magnetic axis. Bishops rotation-minimizing coordinates are used to obtain a local orthogonal frame near t he axis in which the metric is diagonal, even if the curvature has zeros. We treat the cases of vacuum and force-free (Beltrami) fields in a unified way, noting that the vector potential is essentially the Poincare-Liouville one-form of Hamiltonian dynamics, and the resulting magnetic field corresponds to the canonical two-form of a nonautonomous one-degree-of-freedom system. Canonical coordinates are obtained and Floquet theory is used to transform to a frame in which the lowest-order Hamiltonian is autonomous. The resulting magnetic axis can be elliptic or hyperbolic, and resonant elliptic cases are treated. The resulting expansion for the field is shown to be well-defined to all orders, and is explicitly computed to degree four. An example is given for an axis with constant torsion near a 1:3 resonance.
It is well-known that any Lennard-Jones type potential energy must a have periodic ground state given by a triangular lattice in dimension 2. In this paper, we describe a computer-assisted method that rigorously shows such global minimality result am ong $2$-dimensional lattices once the exponents of the potential have been fixed. The method is applied to the widely used classical $(12,6)$ Lennard-Jones potential, which is the main result of this work. Furthermore, a new bound on the inverse density (i.e. the co-volume) for which the triangular lattice is minimal is derived, improving those found in [L. Betermin and P. Zhang, Commun. Contemp. Math., 17 (2015), 1450049] and [L. Betermin, SIAM J. Math. Anal., 48 (2016), 3236-3269]. The same results are also shown to hold for other exponents as additional examples and a new conjecture implying the global optimality of a triangular lattice for any parameters is stated.
In this paper we study a systematic and natural construction of canonical coordinates for the reduced space of a cotangent bundle with a free Lie group action. The canonical coordinates enable us to compute Poincar{e}-Birkhoff normal forms of relativ e equilibria using standard algorithms. The case of simple mechanical systems with symmetries is studied in detail. As examples we compute Poincar{e}-Birkhoff normal forms for a Lagrangian equilateral triangle configuration of a three-body system with a Morse-type potential and the stretched-out configuration of a double spherical pendulum.
The Birkhoffs theorem states that any doubly stochastic matrix lies inside a convex polytope with the permutation matrices at the corners. It can be proven that a similar theorem holds for unitary matrices with equal line sums for prime dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا