ترغب بنشر مسار تعليمي؟ اضغط هنا

What can be learned from a proto-neutron stars mass and radius?

91   0   0.0 ( 0 )
 نشر من قبل Edwan Preau
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Edwan Preau




اسأل ChatGPT حول البحث

We make extensive numerical studies of masses and radii of proto-neutron stars during the first second after their birth in core-collapse supernova events. We use a quasi-static approach for the computation of proto-neutron star structure, built on parameterized entropy and electron fraction profiles, that are then evolved with neutrino cooling processes. We vary the equation of state of nuclear matter, the proto-neutron star mass and the parameters of the initial profiles, to take into account our ignorance of the supernova progenitor properties. We show that if masses and radii of a proto-neutron star can be determined in the first second after the birth, e.g. from gravitational wave emission, no information could be obtained on the corresponding cold neutron star and therefore on the cold nuclear equation of state. Similarly, it seems unlikely that any property of the proto-neutron star equation of state (hot and not beta-equilibrated) could be determined either, mostly due to the lack of information on the entropy, or equivalently temperature, distribution in such objects.

قيم البحث

اقرأ أيضاً

This year marks the thirtieth anniversary of the only supernova from which we have detected neutrinos - SN 1987A. The twenty or so neutrinos that were detected were mined to great depth in order to determine the events that occurred in the explosion and to place limits upon all manner of neutrino properties. Since 1987 the scale and sensitivity of the detectors capable of identifying neutrinos from a Galactic supernova have grown considerably so that current generation detectors are capable of detecting of order ten thousand neutrinos for a supernova at the Galactic Center. Next generation detectors will increase that yield by another order of magnitude. Simultaneous with the growth of neutrino detection capability, our understanding of how massive stars explode and how the neutrino interacts with hot and dense matter has also increased by a tremendous degree. The neutrino signal will contain much information on all manner of physics of interest to a wide community. In this review we describe the expected features of the neutrino signal, the detectors which will detect it, and the signatures one might try to look for in order to get at these physics.
Numerous models for grounded language understanding have been recently proposed, including (i) generic models that can be easily adapted to any given task and (ii) intuitively appealing modular models that require background knowledge to be instantia ted. We compare both types of models in how much they lend themselves to a particular form of systematic generalization. Using a synthetic VQA test, we evaluate which models are capable of reasoning about all possible object pairs after training on only a small subset of them. Our findings show that the generalization of modular models is much more systematic and that it is highly sensitive to the module layout, i.e. to how exactly the modules are connected. We furthermore investigate if modular models that generalize well could be made more end-to-end by learning their layout and parametrization. We find that end-to-end methods from prior work often learn inappropriate layouts or parametrizations that do not facilitate systematic generalization. Our results suggest that, in addition to modularity, systematic generalization in language understanding may require explicit regularizers or priors.
Fine structure of giant resonances (GR) has been established in recent years as a global phenomenon across the nuclear chart and for different types of resonances. A quantitative description of the fine structure in terms of characteristic scales der ived by wavelet techniques is discussed. By comparison with microscpic calculations of GR strength distributions one can extract information on the role of different decay mechanisms contributing to the width of GRs. The observed cross-section fluctuations contain information on the level density (LD) of states with a given spin and parity defined by the multipolarity of the GR.
We aim to investigate the overall properties of the ICRF3 with the help of the Gaia Data release 2 (Gaia DR2). This could serve as an external check of the quality of the ICRF3. The radio source positions of the ICRF3 catalog were compared with the G aia DR2 positions of their optical counterparts at G < 18.7. Their properties were analyzed in terms of the dependency of the quoted error on the number of observations, on the declination, and the global difference, the latter revealed by means of expansions in the vector spherical harmonics. The ICRF3 S/X-band catalog shows a more smooth dependency on the number of observations than the ICRF1 and ICRF2, while the K and X/Ka-band yield a dependency discrepancy at the number of observations of about 50. The rotation of all ICRF catalogs show consistent results, except for the X-component of the X/Ka-band which arises from the positional error in the non-defining sources. No significant glides were found between the ICRF3 S/X-band component and Gaia DR2. However, the K- and X/Ka- band frames show a dipolar deformation in Y-component of +50{mu}as and several quadrupolar terms of 50{mu}as in an absolute sense. A significant glide along Z-axis exceeding 200 {mu}as in the X/Ka-band was also reported. These systematics in the ICRF catalog are shown to be less dependent on the limiting magnitude of the Gaia sample when the number of common sources is sufficient (> 100). The ICRF3 S/X-band catalog shows improved accuracy and systematics at the level of noise floor. But the zonal errors in the X/Ka-band should be noted, especially in the context of comparisons of multi-frequency positions for individual sources.
Neutron stars are formed in core-collapse supernova explosions, where a large number of neutrinos are emitted. In this paper, supernova neutrino light curves are computed for the cooling phase of protoneutron stars, which lasts a few minutes. In the numerical simulations, 90 models of the phenomenological equation of state with different incompressibilities, symmetry energies, and nucleon effective masses are employed for a comprehensive study. It is found that the cooling timescale is longer for a model with a larger neutron star mass and a smaller neutron star radius. Furthermore, a theoretical expression of the cooling timescale is presented as a function of the mass and radius and it is found to describe the numerical results faithfully. These findings suggest that diagnosing the mass and radius of a newly formed neutron star using its neutrino signal is possible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا