ﻻ يوجد ملخص باللغة العربية
We characterize a high-finesse Fabry-Perot resonator for coupling with single neutral atoms. Our cavity consists of two mirrors with different reflectivities: One has minimal optical loss, and the other high transmission loss where more than 90% of the intracavity photons would be emitted. Cavity finesse, birefringent effects, and mechanical resonances are measured using the lasers at 780, 782, and 795 nm. In order to obtain cavity geometric parameters, we drive the adjacent longitudinal or transverse modes with two lasers simultaneously, and measure those frequencies using a precision wavelength meter (WLM). A major novelty of this method is that the parameters uncertainty is solely determined by the resolution of the WLM, eliminating all of the temporal environment fluctuations. Moreover, the technique with two lasers consists of a vital approach for determining geometric parameters of a short cavity, with a free spectral range on the order of THz. Our system operates in the strong atom-cavity coupling regime that allows us to explore fundamental quantum optics and implement quantum network protocols.
We present a novel microfabricated optical cavity, which combines a very small mode volume with high finesse. In contrast to other micro-resonators, such as microspheres, the structure we have built gives atoms and molecules direct access to the high
Cavity-free optical nonreciprocity components, which have an inherent strong asymmetric interaction between the forward- and backward-propagation direction of the probe field, are key to produce such as optical isolators and circulators. According to
We theoretically investigate light scattering from an array of atoms into the guided modes of a waveguide. We show that the scattering of a plane wave laser field into the waveguide modes is dramatically enhanced for angles that deviate from the geom
We propose a novel platform for the investigation of quantum wave packet dynamics, offering a complementary approach to existing theoretical models and experimental systems. It relies on laser-cooled neutral atoms which orbit around an optical nanofi
We present theoretical results of a low-loss all-optical switch based on electromagnetically induced transparency and the classical Zeno effect in a microdisk resonator. We show that a control beam can modify the atomic absorption of the evanescent f