ترغب بنشر مسار تعليمي؟ اضغط هنا

Novel characterization of an optical cavity with small mode volume

162   0   0.0 ( 0 )
 نشر من قبل Moonjoo Lee
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We characterize a high-finesse Fabry-Perot resonator for coupling with single neutral atoms. Our cavity consists of two mirrors with different reflectivities: One has minimal optical loss, and the other high transmission loss where more than 90% of the intracavity photons would be emitted. Cavity finesse, birefringent effects, and mechanical resonances are measured using the lasers at 780, 782, and 795 nm. In order to obtain cavity geometric parameters, we drive the adjacent longitudinal or transverse modes with two lasers simultaneously, and measure those frequencies using a precision wavelength meter (WLM). A major novelty of this method is that the parameters uncertainty is solely determined by the resolution of the WLM, eliminating all of the temporal environment fluctuations. Moreover, the technique with two lasers consists of a vital approach for determining geometric parameters of a short cavity, with a free spectral range on the order of THz. Our system operates in the strong atom-cavity coupling regime that allows us to explore fundamental quantum optics and implement quantum network protocols.



قيم البحث

اقرأ أيضاً

We present a novel microfabricated optical cavity, which combines a very small mode volume with high finesse. In contrast to other micro-resonators, such as microspheres, the structure we have built gives atoms and molecules direct access to the high -intensity part of the field mode, enabling them to interact strongly with photons in the cavity for the purposes of detection and quantum-coherent manipulation. Light couples directly in and out of the resonator through an optical fibre, avoiding the need for sensitive coupling optics. This renders the cavity particularly attractive as a component of a lab-on-a-chip, and as a node in a quantum network.
Cavity-free optical nonreciprocity components, which have an inherent strong asymmetric interaction between the forward- and backward-propagation direction of the probe field, are key to produce such as optical isolators and circulators. According to the proposal presented by Xia et al., [Phys. Rev. Lett. 121, 203602 (2018)], we experimentally build a device that uses cross-Kerr nonlinearity to achieve a cavity-free optical isolator and circulator. Its nonreciprocal behavior arises from the thermal motion of N-type configuration atoms, which induces a strong chiral cross-Kerr nonlinear response for the weak probe beam. We obtain a two-port optical isolator for up to 20 dB of isolation ratio in a specially designed Sagnac interferometer. The distinct propagation directions of the weak probe field determine its cross-phase shift and transmission, by which we demonstrate the accessibility of a four-port optical circulator.
We theoretically investigate light scattering from an array of atoms into the guided modes of a waveguide. We show that the scattering of a plane wave laser field into the waveguide modes is dramatically enhanced for angles that deviate from the geom etric Bragg angle. We derive a modified Bragg condition, and show that it arises from the dispersive interactions between the guided light and the atoms. Moreover, we identify various parameter regimes in which the scattering rate features a qualitatively different dependence on the atom number, such as linear, quadratic, oscillatory or constant behavior. We show that our findings are robust against voids in the atomic array, facilitating their experimental observation and potential applications. Our work sheds new light on collective light scattering and the interplay between geometry and interaction effects, with implications reaching beyond the optical domain.
We propose a novel platform for the investigation of quantum wave packet dynamics, offering a complementary approach to existing theoretical models and experimental systems. It relies on laser-cooled neutral atoms which orbit around an optical nanofi ber in an optical potential produced by a red-detuned guided light field. We show that the atomic center-of-mass motion exhibits genuine quantum effects like collapse and revival of the atomic wave packet. As distinctive advantages, our approach features a tunable dispersion relation as well as straightforward readout for the wave packet dynamics and can be implemented using existing quantum optics techniques.
We present theoretical results of a low-loss all-optical switch based on electromagnetically induced transparency and the classical Zeno effect in a microdisk resonator. We show that a control beam can modify the atomic absorption of the evanescent f ield which suppresses the cavity field buildup and alters the path of a weak signal beam. We predict more than 35 dB of switching contrast with less than 0.1 dB loss using just 2 micro-Watts of control-beam power for signal beams with less than single photon intensities inside the cavity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا