ترغب بنشر مسار تعليمي؟ اضغط هنا

Almost Robinson geometries

127   0   0.0 ( 0 )
 نشر من قبل Arman Taghavi-Chabert
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the geometry of almost Robinson manifolds, Lorentzian analogues of Hermitian manifolds, defined by Nurowski and Trautman as Lorentzian manifolds of even dimension equipped with a totally null complex distribution of maximal rank. Associated to such a structure, there is a congruence of null curves, which, in dimension four, is geodesic and non-shearing if and only if the complex distribution is involutive. Under suitable conditions, the distribution gives rise to an almost Cauchy--Riemann structure on the leaf space of the congruence. We give a comprehensive classification of such manifolds on the basis of their intrinsic torsion. This includes an investigation of the relation between an almost Robinson structure and the geometric properties of the leaf space of its congruence. We also obtain conformally invariant properties of such a structure, and we finally study an analogue of so-called generalised optical geometries as introduced by Robinson and Trautman.

قيم البحث

اقرأ أيضاً

The almost splitting theorem of Cheeger-Colding is established in the setting of almost nonnegative generalized $m$-Bakry-{E}mery Ricci curvature, in which $m$ is positive and the associated vector field is not necessarily required to be the gradient of a function. In this context it is shown that with a diameter upper bound and volume lower bound the fundamental group of such manifolds is almost abelian. Furthermore, extensions of well-known results concerning Ricci curvature lower bounds are given for generalized $m$-Bakry-{E}mery Ricci curvature. These include: the first Betti number bound of Gromov and Gallot, Andersons finiteness of fundamental group isomorphism types, volume comparison, the Abresch-Gromoll inequality, and a Cheng-Yau gradient estimate. Finally, this analysis is applied to stationary vacuum black holes in higher dimensions to find that low temperature horizons must have limited topology, similar to the restrictions exhibited by (extreme) horizons of zero temperature.
We adopt the standard definition of diffeomorphism for Regge gravity in D=2 and give an exact expression of the Liouville action in the discretized case. We also give the exact form of the integration measure for the conformal factor. In D>2 we exten d the approach to any family of geometries described by a finite number of parameters. The ensuing measure is a geometric invariant and it is also invariant in form under an arbitrary change of parameters.
Hamiltons Ricci flow (RF) equations were recently expressed in terms of the edge lengths of a d-dimensional piecewise linear (PL) simplicial geometry, for d greater than or equal to 2. The structure of the simplicial Ricci flow (SRF) equations are di mensionally agnostic. These SRF equations were tested numerically and analytically in 3D for simple models and reproduced qualitatively the solution of continuum RF equations including a Type-1 neckpinch singularity. Here we examine a continuum limit of the SRF equations for 3D neck pinch geometries with an arbitrary radial profile. We show that the SRF equations converge to the corresponding continuum RF equations as reported by Angenent and Knopf.
Let (M,g) be a compact oriented Einstein 4-manifold. Write R-plus for the part of the curvature operator of g which acts on self-dual 2-forms. We prove that if R-plus is negative definite then g is locally rigid: any other Einstein metric near to g i s isometric to it. This is a chiral generalisation of Koisos Theorem, which proves local rigidity of Einstein metrics with negative sectional curvatures. Our hypotheses are roughly one half of Koisos. Our proof uses a new variational description of Einstein 4-manifolds, as critical points of the so-called poure connection action S. The key step in the proof is that when R-plus is negative definite, the Hessian of S is strictly positive modulo gauge.
We establish an explicit correspondence between two--dimensional projective structures admitting a projective vector field, and a class of solutions to the $SU(infty)$ Toda equation. We give several examples of new, explicit solutions of the Toda equ ation, and construct their mini--twistor spaces. Finally we discuss the projective-to-Einstein correspondence, which gives a neutral signature Einstein metric on a cotangent bundle $T^*N$ of any projective structure $(N, [ abla])$. We show that there is a canonical Einstein of metric on an $R^*$--bundle over $T^*N$, with a connection whose curvature is the pull--back of the natural symplectic structure from $T^*N$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا