ترغب بنشر مسار تعليمي؟ اضغط هنا

On Stability of Fermionic Superconducting Current in Cosmic String

97   0   0.0 ( 0 )
 نشر من قبل Yuhei Nakayama
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, the chiral superconductivity of the cosmic string in the axion model has gathered attention. The superconductive nature can alter the standard understanding of the cosmology of the axion model. For example, a string loop with a sizable superconducting current can become a stable configuration, which is called a Vorton. The superconductive nature can also affect the cosmological evolution of the string network. In this paper, we study the stability of the superconducting current in the string. We find the superconductivity is indeed stable for a straight string or infinitely small string core size, even if the carrier particles are unstable in the vacuum. However we also find that the carrier particle decays in a curved string in typical axion models, if the carrier particles are unstable in the vacuum. Accordingly, the lifetime of the Vorton is not far from that of the carrier particle in the vacuum.



قيم البحث

اقرأ أيضاً

We study stabilization of an unstable cosmic string associated with spontaneously broken $U(1)_R$ symmetry, which otherwise causes a dangerous roll-over process. We demonstrate that in a gauge mediation model, messengers can receive enough correction s from the thermal plasma of the supersymmetric standard model particles to stabilize the unstable modes of the string.
In this paper, we consider a massive charged fermionic quantum field and investigate the current densities induced by a magnetic flux running along the core of an idealized cosmic string in the background geometry of a 5-dimensional anti-de Sitter sp acetime, assuming that an extra dimension is compactified. Along the compact dimension quasi-periodicity condition is imposed on the field with a general phase. Moreover, we admit the presence of a magnetic flux enclosed by the compactified axis. The latter gives rise to Ahanorov-Bohm-like effect on the vacuum expectation value of the currents. In this setup, only azimuthal and axial current densities take place. The former presents two contributions, with the first one due to the cosmic string in a 5-dimensional AdS spacetime without compact dimension, and the second one being induced by the compactification itself. The latter is an odd function of the magnetic flux along the cosmic string and an even function of the magnetic flux enclosed by the compactified axis with period equal to the quantum flux. As to the induced axial current, it is an even function of the magnetic flux along the strings core and an odd function of the magnetic flux enclosed by the compactification perimeter. For untwisted and twisted field along compact dimension, the axial current vanishes. The massless field case is presented as well as some asymptotic limits for the parameters of the model.
We investigate the stability of the pion string in a thermal bath and a dense medium. We find that stability is dependent on the order of the chiral transition. String core stability within the experimentally allowed regime is found only if the chira l transition is second order, and even there the stable region is small, i.e., the temperature below which the core is unstable is close to the critical temperature of the phase transition. We also find that the presence of a dense medium, in addition to the thermal bath, enhances the experimentally accessible region with stable strings. We also argue that once the string core decays, the effective winding of the string persists at large distances from the string core. Our analysis is done both in the chiral limit, which is mainly what has been explored in the literature up to now, and for the physical $h e 0$ case, where a conceptual framework is set up for addressing this regime and some simple estimates are done.
We investigate the effects of a brane and magnetic-flux-carrying cosmic string on the vacuum expectation value (VEV) of the current density for a charged fermionic field in the background geometry of 4+1 dimensional anti-de Sitter (AdS) spacetime. Th e brane is parallel to the AdS boundary and the cosmic string is orthogonal to the brane. Two types of boundary conditions are considered on the brane that include the MIT bag boundary condition and the boundary conditions in Z2-symmetric braneworld models. The brane divides the space into two regions with different properties of the vacuum state. The only nonzero component of the current density is along the azimuthal direction and in both the regions the corresponding VEV is decomposed into the brane-free and brane-induced contributions. The latter vanishes on the string and near the string the total current is dominated by the brane-free part. At large distances from the string and in the region between the brane and AdS horizon the decay of the brane-induced current density, as a function of the proper distance, is power-law for both massless and massive fields. For a massive field this behavior is essentially different from that in the Minkowski bulk. In the region between the brane and AdS boundary the large-distance decay of the current density is exponential. Depending on the boundary condition on the brane, the brane-induced contribution is dominant or subdominant in the total current density at large distances from the string. By using the results for fields realizing two inequivalent irreducible representations of the Clifford algebra, the vacuum current density is investigated in C- and P-symmetric fermionic models. Applications are given for a cosmic string in the Randall-Sundrum-type braneworld model with a single brane.
We investigate combined effects of nontrivial topology, induced by a cosmic string, and boundaries on the fermionic condensate and the vacuum expectation value (VEV) of the energy-momentum tensor for a massive fermionic field. As geometry of boundari es we consider two plates perpendicular to the string axis on which the field is constrained by the MIT bag boundary condition. By using the Abel-Plana type summation formula, the VEVs in the region between the plates are decomposed into the boundary-free and boundary-induced contributions for general case of the planar angle deficit. The boundary-induced parts in both the fermionic condensate and the energy-momentum tensor vanish on the cosmic string. Fermionic condensate is positive near the string and negative al large distances, whereas the vacuum energy density is negative everywhere. The radial stress is equal to the energy density. For a massless field, the boundary-induced contribution in the VEV of the energy-momentum tensor is different from zero in the region between the plates only and it does not depend on the coordinate along the string axis. In the region between the plates and at large distances from the string, the decay of the topological part is exponential for both massive and massless fields. This behavior is in contrast to that for the VEV of the energy-momentum tensor in the boundary-free geometry with the power law decay for a massless field. The vacuum pressure on the plates is inhomogeneous and vanishes at the location of the string. The corresponding Casimir forces are attractive.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا