ﻻ يوجد ملخص باللغة العربية
Recently, the chiral superconductivity of the cosmic string in the axion model has gathered attention. The superconductive nature can alter the standard understanding of the cosmology of the axion model. For example, a string loop with a sizable superconducting current can become a stable configuration, which is called a Vorton. The superconductive nature can also affect the cosmological evolution of the string network. In this paper, we study the stability of the superconducting current in the string. We find the superconductivity is indeed stable for a straight string or infinitely small string core size, even if the carrier particles are unstable in the vacuum. However we also find that the carrier particle decays in a curved string in typical axion models, if the carrier particles are unstable in the vacuum. Accordingly, the lifetime of the Vorton is not far from that of the carrier particle in the vacuum.
We study stabilization of an unstable cosmic string associated with spontaneously broken $U(1)_R$ symmetry, which otherwise causes a dangerous roll-over process. We demonstrate that in a gauge mediation model, messengers can receive enough correction
In this paper, we consider a massive charged fermionic quantum field and investigate the current densities induced by a magnetic flux running along the core of an idealized cosmic string in the background geometry of a 5-dimensional anti-de Sitter sp
We investigate the stability of the pion string in a thermal bath and a dense medium. We find that stability is dependent on the order of the chiral transition. String core stability within the experimentally allowed regime is found only if the chira
We investigate the effects of a brane and magnetic-flux-carrying cosmic string on the vacuum expectation value (VEV) of the current density for a charged fermionic field in the background geometry of 4+1 dimensional anti-de Sitter (AdS) spacetime. Th
We investigate combined effects of nontrivial topology, induced by a cosmic string, and boundaries on the fermionic condensate and the vacuum expectation value (VEV) of the energy-momentum tensor for a massive fermionic field. As geometry of boundari