ﻻ يوجد ملخص باللغة العربية
Compact objects inspiraling into supermassive black holes, known as extreme-mass-ratio inspirals, are an important source for future space-borne gravitational-wave detectors. When constructing waveform templates, usually the adiabatic approximation is employed to treat the compact object as a test particle for a short duration, and the radiation reaction is reflected in the changes of the constants of motion. However, the mass of the compact object should have contributions to the background. In the present paper, employing the effective-one-body formalism, we analytically calculate the trajectories of a compact object around a massive Kerr black hole with generally three-dimensional orbits and express the fundamental orbital frequencies in explicit forms. In addition, by constructing an approximate constant similar to the Carter constant, we transfer the dynamical quantities such as energy, angular momentum, and the Carter constant to the semilatus rectum, eccentricity, and orbital inclination with mass-ratio corrections. The linear mass-ratio terms in the formalism may not be sufficient for accurate waveforms, but our analytical method for solving the equations of motion could be useful in various approaches to building waveform models.
We discuss the properties of the effective-one-body (EOB) multipolar gravitational waveform emitted by nonspinning black-hole binaries of masses $mu$ and $M$ in the extreme-mass-ratio limit, $mu/M= ull 1$. We focus on the transition from quasicircula
We develop the foundations of an effective-one-body (EOB) model for eccentric binary coalescences that includes the conservative dynamics, radiation reaction, and gravitational waveform modes from the inspiral and the merger-ringdown signals. We use
While most binary inspirals are expected to have circularized before they enter the LIGO/Virgo frequency band, a small fraction of those binaries could have non-negligible orbital eccentricity depending on their formation channel. Hence, it is import
We describe a new class of resonances for extreme mass-ratio inspirals (EMRIs): tidal resonances, induced by the tidal field of nearby stars or stellar-mass black holes. A tidal resonance can be viewed as a general relativistic extension of the Kozai
We describe a new kludge scheme to model the dynamics of generic extreme-mass-ratio inspirals (EMRIs; stellar compact objects spiraling into a spinning supermassive black hole) and their gravitational-wave emission. The Chimera scheme is a hybrid met