ترغب بنشر مسار تعليمي؟ اضغط هنا

Plasmonic nano-optical trap stiffness measurements and design optimization

80   0   0.0 ( 0 )
 نشر من قبل Jerome Wenger
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Plasmonic nano-optical tweezers enable the non-invasive manipulation of nano-objects under low illumination intensities, and have become a powerful tool for nanotechnology and biophysics. However, measuring the trap stiffness of nanotweezers remains a complicated task, which hinders the development of plasmonic trapping. Here, we describe an experimental method to measure the trap stiffness based on the temporal correlation of the fluorescence from the trapped object. The method is applied to characterize the trap stiffness in different double nanohole apertures and explore the influence of their design parameters in relationship with numerical simulations. Optimizing the double nanohole design achieves a trap stiffness 10x larger than the previous state-of-the-art. The experimental method and the design guidelines discussed here offer a simple and efficient way to improve the performance of nano-optical tweezers.

قيم البحث

اقرأ أيضاً

Nanoantennas for light enhance light-matter interaction at the nanoscale making them useful in optical communication, sensing, and spectroscopy. So far nanoantenna engineering has been largely based on rules derived from the radio frequency domain wh ich neglect the inertia of free metal electrons at optical frequencies causing phenomena such as complete field penetration, ohmic losses and plasmon resonances. Here we introduce a general and scalable evolutionary algorithm that accounts for topological constrains of the fabrication method and therefore yields unexpected nanoantenna designs exhibiting strong light localization and enhancement which can directly be printed by focused-ion beam milling. The fitness ranking in a hierarchy of such antennas is validated experimentally by two-photon photoluminescence. Analysis of the best antennas operation principle shows that it deviates fundamentally from that of classical radio wave-inspired designs. Our work sets the stage for a widespread application of evolutionary optimization to a wide range of problems in nano photonics.
Plasmonic nano-tweezers use intense electric field gradients to generate optical forces able to trap nano-objects in liquids. However, part of the incident light is absorbed into the metal, and a supplementary thermophoretic force acting on the nano- object arises from the resulting temperature gradient. Plasmonic nano-tweezers thus face the challenge of disentangling the intricate contributions of the optical and thermophoretic forces. Here, we show that commonly added surfactants can unexpectedly impact the trap performance by acting on the thermophilic or thermophobic response of the nano-object. Using different surfactants in double nanohole plasmonic trapping experiments, we measure and compare the contributions of the thermophoretic and the optical forces, evidencing a trap stiffness 20x higher using sodium dodecyl sulfate (SDS) as compared to Triton X-100. This work uncovers an important mechanism in plasmonic nano-tweezers and provides guidelines to control and optimize the trap performance for different plasmonic designs.
The authors recent Nature Photonics article titled Compact Nano-Mechanical Plasmonic Phase Modulators [1] is reviewed which reports a new phase modulation principle with experimental demonstration of a 23 {mu}m long non-resonant modulator having 1.5 {pi} rad range with 1.7 dB excess loss at 780 nm. Analysis showed that by decreasing all dimensions, a low loss, ultra-compact {pi} rad phase modulator is possible. Application of this type of nano-mechanical modulator in a miniature 2 x 2 switch is suggested and an optical design numerically validated. The footprint of the switch is 0.5 {mu}m x 2.5 {mu}m.
We review the basic physics behind light interaction with plasmonic nanoparticles. The theoretical foundations of light scattering on one metallic particle (a plasmonic monomer) and two interacting particles (a plasmonic dimer) are systematically inv estigated. Expressions for effective particle susceptibility (polarizability) are derived, and applications of these results to plasmonic nanoantennas are outlined. In the long-wavelength limit, the effective macroscopic parameters of an array of plasmonic dimers are calculated. These parameters are attributable to an effective medium corresponding to a dilute arrangement of nanoparticles, i.e., a metamaterial where plasmonic monomers or dimers have the function of meta-atoms. It is shown that planar dimers consisting of rod-like particles generally possess elliptical dichroism and function as atoms for planar chiral metamaterials. The fabricational simplicity of the proposed rod-dimer geometry can be used in the design of more cost-effective chiral metamaterials in the optical domain.
96 - Nicola M. Pugno 2005
In this letter a mathematical model to design nano-bio-inspired hierarchical materials is proposed. An optimization procedure is also presented. Simple formulas describing the dependence of strength, fracture toughness and stiffness on the considered size-scale are derived, taking into account the toughening biomechanisms. Furthermore, regarding nano-grained materials the optimal grain size is deduced: incidentally, it explains and quantitatively predicts the deviation from the well-known Hall-Petch regime. In contrast with the common credence, this deviation does not arise at a universal value of grain size but it is strongly dependent on the mechanical properties of the mixture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا