ﻻ يوجد ملخص باللغة العربية
As NISQ devices have several physical limitations and unavoidable noisy quantum operations, only small circuits can be executed on a quantum machine to get reliable results. This leads to the quantum hardware under-utilization issue. Here, we address this problem and improve the quantum hardware throughput by proposing a multiprogramming approach to execute multiple quantum circuits on quantum hardware simultaneously. We first introduce a parallelism manager to select an appropriate number of circuits to be executed at the same time. Second, we present two different qubit partitioning algorithms to allocate reliable partitions to multiple circuits-a greedy and a heuristic. Third, we use the Simultaneous Randomized Benchmarking protocol to characterize the crosstalk properties and consider them in the qubit partition process to avoid crosstalk effect during simultaneous executions. Finally, we enhance the mapping transition algorithm to make circuits executable on hardware using decreased number of inserted gates. We demonstrate the performance of our multi-programming approach by executing circuits of different size on IBM quantum hardware simultaneously. We also investigate this method on VQE algorithm to reduce its overhead.
Noisy Intermediate-Scale Quantum (NISQ) hardware has unavoidable noises, and crosstalk error is a significant error source. When multiple quantum operations are executed simultaneously, the quantum state can be corrupted due to the crosstalk between
Due to several physical limitations in the realisation of quantum hardware, todays quantum computers are qualified as Noisy Intermediate-Scale Quantum (NISQ) hardware. NISQ hardware is characterized by a small number of qubits (50 to a few hundred) a
Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future. Quantum computers with 50-100 qubits may be able to perform tasks which surpass the capabilities of todays classical digital computers, but noise in quantum gate
Due to little consideration in the hardware constraints, e.g., limited connections between physical qubits to enable two-qubit gates, most quantum algorithms cannot be directly executed on the Noisy Intermediate-Scale Quantum (NISQ) devices. Dynamica
Recent years have witnessed the fast development of quantum computing. Researchers around the world are eager to run larger and larger quantum algorithms that promise speedups impossible to any classical algorithm. However, the available quantum comp