ﻻ يوجد ملخص باللغة العربية
We investigate the properties of baryonic matter within the framework of the in-medium modified chiral soliton model by taking into account the effects of surrounding baryonic environment on the properties of in-medium baryons. The internal parameters of the model are determined based on nuclear phenomenology at nonstrange sector and fitted by reproducing nuclear matter properties near the saturation point. We discuss the equations of state in different nuclear environments such as symmetric nuclear matter, neutron and strange matters. We show that the results for the equations of state are in good agreement with the phenomenology of nuclear matter. We also discuss how the SU(3) baryons masses undergo changes in these various types of nuclear matter.
Exploiting certain robust topological inputs from the skyrmion description of compressed baryonic matter with a scale-chiral symmetric Lagrangian, we predict the equation of state that is consistent with the properties of nuclear matter at the equili
We report an analysis of the octet baryon masses using the covariant baryon chiral perturbation theory up to next-to-next-to-next-to-leading order with and without the virtual decuplet contributions. Particular attention is paid to the finite-volume
We report on a recent study of the ground-state octet baryon masses and sigma terms in covariant baryon chiral perturbation theory with the extended-on-mass-shell scheme up to next-to-next-to-next-to-leading order. To take into account lattice QCD ar
We perform statistically rigorous uncertainty quantification (UQ) for chiral effective field theory ($chi$EFT) applied to infinite nuclear matter up to twice nuclear saturation density. The equation of state (EOS) is based on high-order many-body per
The published theoretical data of few models (PHSD/HSD both with and without chiral symmetry restoration) applied to experimental data from collisions of nuclei from SIS to LHC energies, have been analised by using of the meta-analysis what allowed t