ﻻ يوجد ملخص باللغة العربية
We construct discontinuous point of the Lyapunov exponent of quasiperiodic Schrodinger cocycles in the Gevrey space $G^{s}$ with $s>2$. In contrast, the Lyapunov exponent has been proved to be continuous in the Gevrey space $G^{s}$ with $s<2$ cite{klein,cgyz}. This shows that $G^2$ is the transition space for the continuity of the Lyapunov exponent.
We prove the Holder continuity of the Lyapunov exponent for quasi-periodic Schrodinger cocycles with a $C^2$ cos-type potential and any fixed Liouvillean frequency, provided the coupling constant is sufficiently large. Moreover, the Holder exponent i
For quasiperiodic Schrodinger operators with one-frequency analytic potentials, from dynamical systems side, it has been proved that the corresponding quasiperiodic Schrodinger cocycle is either rotations reducible or has positive Lyapunov exponent f
The Lyapunov exponent characterizes the asymptotic behavior of long matrix products. Recognizing scenarios where the Lyapunov exponent is strictly positive is a fundamental challenge that is relevant in many applications. In this work we establish a
Let $G$ be a semisimple Lie group acting on a space $X$, let $mu$ be a compactly supported measure on $G$, and let $A$ be a strongly irreducible linear cocycle over the action of $G$. We then have a random walk on $X$, and let $T$ be the associated s
We consider families of dynamics that can be described in terms of Perron-Frobenius operators with exponential mixing properties. For piecewise C^2 expanding interval maps we rigorously prove continuity properties of the drift J(l) and of the diffusi