ترغب بنشر مسار تعليمي؟ اضغط هنا

Transition space for the continuity of the Lyapunov exponent of quasiperiodic Schrodinger cocycles

339   0   0.0 ( 0 )
 نشر من قبل Lingrui Ge Dr
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct discontinuous point of the Lyapunov exponent of quasiperiodic Schrodinger cocycles in the Gevrey space $G^{s}$ with $s>2$. In contrast, the Lyapunov exponent has been proved to be continuous in the Gevrey space $G^{s}$ with $s<2$ cite{klein,cgyz}. This shows that $G^2$ is the transition space for the continuity of the Lyapunov exponent.



قيم البحث

اقرأ أيضاً

We prove the Holder continuity of the Lyapunov exponent for quasi-periodic Schrodinger cocycles with a $C^2$ cos-type potential and any fixed Liouvillean frequency, provided the coupling constant is sufficiently large. Moreover, the Holder exponent i s independent of the frequency and the coupling constant.
For quasiperiodic Schrodinger operators with one-frequency analytic potentials, from dynamical systems side, it has been proved that the corresponding quasiperiodic Schrodinger cocycle is either rotations reducible or has positive Lyapunov exponent f or all irrational frequency and almost every energy. From spectral theory side, the Schrodinger conjecture and the Lasts intersection spectrum conjecture have been verified. The proofs of above results crucially depend on the analyticity of the potentials. People are curious about if the analyticity is essential for those problems, see open problems by Fayad-Krikorian and Jitomirskaya-Mar. In this paper, we prove the above mentioned results for ultra-differentiable potentials.
The Lyapunov exponent characterizes the asymptotic behavior of long matrix products. Recognizing scenarios where the Lyapunov exponent is strictly positive is a fundamental challenge that is relevant in many applications. In this work we establish a novel tool for this task by deriving a quantitative lower bound on the Lyapunov exponent in terms of a matrix sum which is efficiently computable in ergodic situations. Our approach combines two deep results from matrix analysis --- the $n$-matrix extension of the Golden-Thompson inequality and the Avalanche-Principle. We apply these bounds to the Lyapunov exponents of Schrodinger cocycles with certain ergodic potentials of polymer type and arbitrary correlation structure. We also derive related quantitative stability results for the Lyapunov exponent near aligned diagonal matrices and a bound for almost-commuting matrices.
144 - Alex Eskin , Carlos Matheus 2013
Let $G$ be a semisimple Lie group acting on a space $X$, let $mu$ be a compactly supported measure on $G$, and let $A$ be a strongly irreducible linear cocycle over the action of $G$. We then have a random walk on $X$, and let $T$ be the associated s hift map. We show that the cocycle $A$ over the action of $T$ is conjugate to a block conformal cocycle. This statement is used in the recent paper by Eskin-Mirzakhani on the classifications of invariant measures for the SL(2,R) action on moduli space. The ingredients of the proof are essentially contained in the papers of Guivarch and Raugi and also Goldsheid and Margulis.
We consider families of dynamics that can be described in terms of Perron-Frobenius operators with exponential mixing properties. For piecewise C^2 expanding interval maps we rigorously prove continuity properties of the drift J(l) and of the diffusi on coefficient D(l) under parameter variation. Our main result is that D(l) has a modulus of continuity of order O(|dl||log|dl|)^2), i.e. D(l) is Lipschitz continuous up to quadratic logarithmic corrections. For a special class of piecewise linear maps we provide more precise estimates at specific parameter values. Our analytical findings are verified numerically for the latter class of maps by using exact formulas for the transport coefficients. We numerically observe strong local variations of all continuity properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا