ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for Low-mass Population III Stars Disguised as White Dwarfs

94   0   0.0 ( 0 )
 نشر من قبل Vedant Chandra
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is uncertain whether or not low-mass Population III stars ever existed. While limits on the number density of Population III stars with $M_{ast} approx 0.8~M_{odot}$ have been derived using Sloan Digital Sky Survey (SDSS) data, little is known about the occurrence of Population III stars at lower masses. In the absence of reliable parallaxes, the spectra of metal-poor main sequence (MPMS) stars with $M_{ast} lesssim 0.8~M_{odot}$ can easily be confused with cool white dwarfs. To resolve this ambiguity, we present a classifier that differentiates between MPMS stars and white dwarfs based on photometry and/or spectroscopy without the use of parallax information. We build and train our classifier using state-of-the-art theoretical spectra and evaluate it on existing SDSS-based classifications for objects with reliable Gaia DR2 parallaxes. We then apply our classifier to a large catalog of objects with SDSS photometry and spectroscopy to search for MPMS candidates. We discover several previously unknown candidate extremely metal-poor (EMP) stars and recover numerous confirmed EMP stars already in the literature. We conclude that archival SDSS spectroscopy has already been exhaustively searched for EMP stars. We predict that the lowest-mass primordial-composition stars will have redder optical-to-infrared colors than cool white dwarfs at constant effective temperature due to surface gravity-dependent collision-induced absorption from molecular hydrogen. We suggest that the application of our classifier to data produced by next-generation spectroscopic surveys will set stronger constraints on the number density of low-mass Population III stars in the Milky Way.



قيم البحث

اقرأ أيضاً

136 - Warren R. Brown 2011
Extremely low mass (ELM) white dwarfs (WDs) with masses <0.25 Msun are rare objects that result from compact binary evolution. Here, we present a targeted spectroscopic survey of ELM WD candidates selected by color. The survey is 71% complete and has uncovered 18 new ELM WDs. Of the 7 ELM WDs with follow-up observations, 6 are short-period binaries and 4 have merger times less than 5 Gyr. The most intriguing object, J1741+6526, likely has either a pulsar companion or a massive WD companion making the system a possible supernova Type Ia or .Ia progenitor. The overall ELM Survey has now identified 19 double degenerate binaries with <10 Gyr merger times. The significant absence of short orbital period ELM WDs at cool temperatures suggests that common envelope evolution creates ELM WDs directly in short period systems. At least one-third of the merging systems are halo objects, thus ELM WD binaries continue to form and merge in both the disk and the halo.
134 - Ralf Napiwotzki 2009
The contribution of white dwarfs of the different Galactic populations to the stellar content of our Galaxy is only poorly known. Some authors claim a vast population of halo white dwarfs, which would be in accordance with some investigations of the early phases of Galaxy formation claiming a top-heavy initial-mass-function. Here, I present a model of the population of white dwarfs in the Milky Way based on observations of the local white dwarf sample and a standard model of Galactic structure. This model will be used to estimate the space densities of thin disc, thick disc and halo white dwarfs and their contribution to the baryonic mass budget of the Milky Way. One result of this investigation is that white dwarfs of the halo population contribute a large fraction of the Galactic white dwarf number count, but they are not responsible for the lions share of stellar mass in the Milky Way. Another important result is the substantial contribution of the - often neglected - population of thick disc white dwarfs. Misclassification of thick disc white dwarfs is responsible for overestimates of the halo population in previous investigations.
We systematically investigated the heating of coronal loops on metal-free stars with various stellar masses and magnetic fields by magnetohydrodynamic simulations. It is found that the coronal property is dependent on the coronal magnetic field stren gth $B_{rm c}$ because it affects the difference of the nonlinearity of the Alfv{e}nic waves. Weaker $B_{rm c}$ leads to cooler and less dense coronae because most of the input waves dissipate in the lower atmosphere on account of the larger nonlinearity. Accordingly EUV and X-ray luminosities also correlate with $B_{rm c}$, while they are emitted in a wide range of the field strength. Finally we extend our results to evaluating the contribution from low-mass Population III coronae to the cosmic reionization. Within the limited range of our parameters on magnetic fields and loop lengths, the EUV and X-ray radiations give a weak impact on the ionization and heating of the gas at high redshifts. However, there still remains a possibility of the contribution to the reionization from energetic flares involving long magnetic loops.
We report on a search for pulsars at the positions of eight low-mass white dwarfs and one higher-mass white dwarf with the 100-m Effelsberg Radio Telescope. These systems have orbital parameters suggesting that their unseen companions are either mass ive white dwarfs or neutron stars. Our observations were performed at 1.36 GHz, reaching sensitivities of 0.1-0.2 mJy. We searched our data accounting for the possible acceleration and jerk of the pulsar signals due to orbital motion, but found no significant pulsar signals. Considering our result jointly with 20 non-detections of similar systems with the Greenbank Radio Telescope, we infer $f_{rm NS}leq 0.10$, for the fraction of NSs orbiting these white dwarfs. We discuss the sensitivity of this result to the underlying assumptions and conclude with a brief discussion on the prospects of targeted surveys for discovering millisecond pulsars.
We report the discovery of an esdL3 subdwarf, ULAS J020858.62+020657.0, and a usdL4.5 subdwarf, ULAS J230711.01+014447.1. They were identified as L subdwarfs by optical spectra obtained with the Gran Telescopio Canarias, and followed up by optical-to -near-infrared spectroscopy with the Very Large Telescope. We also obtained an optical-to-near-infrared spectrum of a previously known L subdwarf, ULAS J135058.85+081506.8, and reclassified it as a usdL3 subdwarf. These three objects all have typical halo kinematics. They have $T_{rm eff}$ around 2050$-$2250 K, $-$1.8 $leq$ [Fe/H] $leq -$1.5, and mass around 0.0822$-$0.0833 M$_{odot}$, according to model spectral fitting and evolutionary models. These sources are likely halo transitional brown dwarfs with unsteady hydrogen fusion, as their masses are just below the hydrogen-burning minimum mass, which is $sim$ 0.0845 M$_{odot}$ at [Fe/H] = $-$1.6 and $sim$ 0.0855 M$_{odot}$ at [Fe/H] = $-$1.8. Including these, there are now nine objects in the `halo brown dwarf transition zone, which is a `substellar subdwarf gap that spans a wide temperature range within a narrow mass range of the substellar population.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا