ترغب بنشر مسار تعليمي؟ اضغط هنا

Possible Pressure-Induced Charge-Density Wave Quantum Critical Point in LuPd2In

111   0   0.0 ( 0 )
 نشر من قبل Michael Nicklas
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated the effect of application of hydrostatic pressure on the charge-density wave (CDW) state in Lu(Pt$_{1-x}$Pd$_x$)$_2$In by electrical-resistivity measurements. In Lu(Pt$_{0.7}$Pd$_{0.3}$)$_{2}$In we find an increase of the CDW transition temperature upon application of pressure, which is not expected based on simple volume arguments, but in line with results of a theoretical work by Kim et al. [Phys. Rev. Lett. 125, 157001 (2020).]. Combining experimental and theoretical results suggests the existence of a CDW quantum critical point in stoichiometric LuPd$_2$In around $papprox20$ GPa.



قيم البحث

اقرأ أيضاً

We report transport measurements under very high current densities $j$, up to $sim10^8$~A/cm$^2$, of quasi-one-dimensional charge-density wave (CDW) conductors NbSe$_3$ and TaS$_3$. Joule heating has been minimized by using a point-contact configurat ion or by measuring samples with extremely small cross-sections. Above $j_c approx 10^7$~A/cm$^2$ we find evidence for suppression of the Peierls gap and development of the metallic state. The critical CDW velocity corresponding with $j_0$ is comparable with the sound velocity, and with $Delta/ hbar k_F$ ($k_F$ is the Fermi wave vector), which corresponds to the depairing current. Possible scenarios of the Peierls state destruction are discussed.
UTe$_2$ is a recently discovered unconventional superconductor that has attracted much interest due to its many intriguing properties - a large residual density-of-states in the superconducting state, re-entrant superconductivity in high magnetic fie lds, and potentially spin-triplet topological superconductivity. Our ac calorimetry, electrical resistivity, and x-ray absorption study of UTe$_2$ under applied pressure reveals key new insights on the superconducting and magnetic states surrounding pressure-induced quantum criticality at P$_{c1}$ = 1.3 GPa. First, our specific heat data at low pressures, combined with a phenomenological model, show that pressure alters the balance between two closely competing superconducting orders. Second, near 1.5 GPa we detect two bulk transitions that trigger changes in the resistivity which are consistent with antiferromagnetic order, rather than ferromagnetism. The presence of both bulk magnetism and superconductivity at pressures above P$_{c2}$ = 1.4 GPa results in a significant temperature difference between resistively and thermodynamically determined transitions into the superconducting state, which indicates a suppression of the superconducting volume fraction by magnetic order. Third, the emergence of magnetism is accompanied by an increase in valence towards a U$^{4+}$ (5f2) state, which indicates that UTe$_2$ exhibits intermediate valence at ambient pressure. Our results suggest that antiferromagnetic fluctuations may play a more significant role on the superconducting state of UTe$_2$ than previously thought.
89 - S. Sahoo , U. Dutta , L. Harnagea 2019
We report pressure evolution of charge density wave (CDW) order and emergence of superconductivity (SC) in 1T-VSe2 single crystal by studying resistance and magnetoresistance behavior under high pressure. With increasing quasi-hydrostatic pressure th e CDW order enhances with increase ofthe ordering temperature up to 240K at 12 GPa. Upon further increase of pressure, the resistance anomaly due to CDW order gets suppressed drastically and superconductivity emerges at ~15 GPa, with the onset critical temperature (Tc) ~ 4K. The pressure dependence of Tc is found negligible, different from the significant increase or a dome-shape seen in iso-structural layered diselenide superconductors. The high pressure magnetoresistance and Hall measurements suggest successive electronic structural changes with Fermi surface modifications at 6 GPa and 12GPa. From the observed negative magnetoresistance in this pressure range and absence of coexisting CDW and SC phases, we propose that intra-layer spin-fluctuation can play a role in the emergence of superconductivity in the high pressure phase.
We present a state-of-the-art x-ray diffraction study of the charge density wave order in 1T-TaS2 as a function of temperature and pressure. Our results prove that the charge density wave, which we characterize in terms of wave vector, amplitude and the coherence length, indeed exists in the superconducting region of the phase diagram. The data further imply that the ordered charge density wave structure as a whole becomes superconducting at low temperatures, i. e, superconductivity and charge density wave coexist on a macroscopic scale in real space. This result is fundamentally different from a previously proposed separation of superconducting and insulating regions in real space and, instead, provides evidence that the superconducting and the charge density wave gap exist in separate regions of reciprocal space.
We report the magnetoresistance in the novel spin-triplet superconductor UTe2 under pressure close to the critical pressure Pc, where the superconducting phase terminates, for field along the three a, b and c-axes in the orthorhombic structure. The s uperconducting phase for H // a-axis just below Pc shows a field-reentrant behavior due to the competition with the emergence of magnetic order at low fields. The upper critical field Hc2 for H // c-axis shows a quasi-vertical increase in the H-T phase diagram just below Pc, indicating that superconductivity is reinforced by the strong fluctuations which persist even at high fields above 20T. Increasing pressure leads to the disappearance of superconductivity at zero field with the emergence of magnetic order. Surprisingly, field-induced superconductivity is observed at high fields, where a spin-polarized state is realized due to the suppression of the magnetic ordered phases; the spin-polarized state is favorable for superconductivity, whereas the magnetic ordered phase at low field seems to be unfavorable. The huge Hc2 in the spin-polarized state seems to imply a spin-triplet state. Contrary to the a- and c-axes, no field-reinforcement of superconductivity occurs for magnetic field along the b-axis. We compare the results with the field-reentrant superconductivity above the metamagnetic field, Hm for the field direction tilted by about 30 deg. from b to c-axis at ambient pressure as well as the field-reentrant (-reinforced) superconductivity in ferromagnetic superconductors, URhGe and UCoGe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا