ﻻ يوجد ملخص باللغة العربية
Symmetry plays an important role in the topological band theory to remedy the eigenstates gauge obstruction at the cost of a symmetry anomaly and zero-energy boundary modes. One can also make use of the symmetry to enumerate the topological invariants - giving a symmetry classification table. Here we consider various topological phases protected by different symmetries, and examine how the corresponding topological invariants evolve once the protecting symmetry is spontaneously lost. To our surprise, we find that the topological invariants and edge states can sometimes be robust to symmetry breaking quantum orders. This topological robustness persists as long as the mean-field Hamiltonian in a symmetry breaking ordered phase maintains its adiabatic continuity to the non-interacting Hamiltonian. For example, for a time-reversal symmetric topological phase in 2+1D, we show that the Z_2 time-reversal polarization continues to be a good topological invariant even after including distinct time-reversal breaking order parameters. Similar conclusions are drawn for various other symmetry breaking cases. Finally, we discuss that the change in the internal symmetry associated with the spontaneous symmetry breaking has to be accounted for to reinstate the topological invariants into the expected classification table.
We study classification of interacting fermionic symmetry-protected topological (SPT) phases with both rotation symmetry and Abelian internal symmetries in one, two, and three dimensions. By working out this classification, on the one hand, we demons
Inspired by a recently constructed commuting-projector Hamiltonian for a two-dimensional (2D) time-reversal-invariant topological superconductor [Wang et al., Phys. Rev. B 98, 094502 (2018)], we introduce a commuting-projector model that describes an
The construction and classification of symmetry-protected topological (SPT) phases in interacting bosonic and fermionic systems have been intensively studied in the past few years. Very recently, a complete classification and construction of space gr
We review the dimensional reduction procedure in the group cohomology classification of bosonic SPT phases with finite abelian unitary symmetry group. We then extend this to include general reductions of arbitrary dimensions and also extend the proce
Topological phenomena are commonly studied in phases of matter which are separated from a trivial phase by an unavoidable quantum phase transition. This can be overly restrictive, leaving out scenarios of practical relevance -- similar to the distinc