ﻻ يوجد ملخص باللغة العربية
Recently, methods based on Convolutional Neural Networks (CNN) achieved impressive success in semantic segmentation tasks. However, challenges such as the class imbalance and the uncertainty in the pixel-labeling process are not completely addressed. As such, we present a new approach that calculates a weight for each pixel considering its class and uncertainty during the labeling process. The pixel-wise weights are used during training to increase or decrease the importance of the pixels. Experimental results show that the proposed approach leads to significant improvements in three challenging segmentation tasks in comparison to baseline methods. It was also proved to be more invariant to noise. The approach presented here may be used within a wide range of semantic segmentation methods to improve their robustness.
We describe an unsupervised domain adaptation method for image content shift caused by viewpoint changes for a semantic segmentation task. Most existing methods perform domain alignment in a shared space and assume that the mapping from the aligned s
Unsupervised Domain Adaptation (UDA) for semantic segmentation has been actively studied to mitigate the domain gap between label-rich source data and unlabeled target data. Despite these efforts, UDA still has a long way to go to reach the fully sup
This paper presents an efficient annotation procedure and an application thereof to end-to-end, rich semantic segmentation of the sensed environment using FMCW scanning radar. We advocate radar over the traditional sensors used for this task as it op
Unsupervised domain adaptation (UDA) aims to adapt existing models of the source domain to a new target domain with only unlabeled data. Most existing methods suffer from noticeable negative transfer resulting from either the error-prone discriminato
Currently, the state-of-the-art methods treat few-shot semantic segmentation task as a conditional foreground-background segmentation problem, assuming each class is independent. In this paper, we introduce the concept of meta-class, which is the met