ترغب بنشر مسار تعليمي؟ اضغط هنا

SceML - A Graphical Modeling Framework for Scenario-based Testing of Autonomous Vehicles

65   0   0.0 ( 0 )
 نشر من قبل Barbara Ulrike Schuett
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Ensuring the functional correctness and safety of autonomous vehicles is a major challenge for the automotive industry. However, exhaustive physical test drives are not feasible, as billions of driven kilometers would be required to obtain reliable results. Scenariobased testing is an approach to tackle this problem and reduce necessary test drives by replacing driven kilometers with simulations of relevant or interesting scenarios. These scenarios can be generated or extracted from recorded data with machine learning algorithms or created by experts. In this paper, we propose a novel graphical scenario modeling language. The graphical framework allows experts to create new scenarios or review ones designed by other experts or generated by machine learning algorithms. The scenario description is modeled as a graph and based on behavior trees. It supports different abstraction levels of scenario description during software and test development. Additionally, the graphbased structure provides modularity and reusable sub-scenarios, an important use case in scenario modeling. A graphical visualization of the scenario enhances comprehensibility for different users. The presented approach eases the scenario creation process and increases the usage of scenarios within development and testing processes.



قيم البحث

اقرأ أيضاً

In this paper, we present ViSTA, a framework for Virtual Scenario-based Testing of Autonomous Vehicles (AV), developed as part of the 2021 IEEE Autonomous Test Driving AI Test Challenge. Scenario-based virtual testing aims to construct specific chall enges posed for the AV to overcome, albeit in virtual test environments that may not necessarily resemble the real world. This approach is aimed at identifying specific issues that arise safety concerns before an actual deployment of the AV on the road. In this paper, we describe a comprehensive test case generation approach that facilitates the design of special-purpose scenarios with meaningful parameters to form test cases, both in automated and manual ways, leveraging the strength and weaknesses of either. Furthermore, we describe how to automate the execution of test cases, and analyze the performance of the AV under these test cases.
In the field of mutation analysis, mutation is the systematic generation of mutated programs (i.e., mutants) from an original program. The concept of mutation has been widely applied to various testing problems, including test set selection, fault lo calization, and program repair. However, surprisingly little focus has been given to the theoretical foundation of mutation-based testing methods, making it difficult to understand, organize, and describe various mutation-based testing methods. This paper aims to consider a theoretical framework for understanding mutation-based testing methods. While there is a solid testing framework for general testing, this is incongruent with mutation-based testing methods, because it focuses on the correctness of a program for a test, while the essence of mutation-based testing concerns the differences between programs (including mutants) for a test. In this paper, we begin the construction of our framework by defining a novel testing factor, called a test differentiator, to transform the paradigm of testing from the notion of correctness to the notion of difference. We formally define behavioral differences of programs for a set of tests as a mathematical vector, called a d-vector. We explore the multi-dimensional space represented by d-vectors, and provide a graphical model for describing the space. Based on our framework and formalization, we interpret existing mutation-based fault localization methods and mutant set minimization as applications, and identify novel implications for future work.
91 - Haiyang Ao , Ya Pan 2021
To improve the security and robustness of autonomous driving models, this paper presents SMET, a scenariobased metamorphic testing tool for autonomous driving models. The metamorphic relationship is divided into three dimensions (time, space, and eve nt) and demonstrates its effectiveness through case studies in two types of autonomous driving models with different outputs.Experimental results show that this tool can well detect potential defects of the autonomous driving model, and complex scenes are more effective than simple scenes.
172 - Bo Yang , Yiwen Lu , Xu Yang 2021
Drift control is significant to the safety of autonomous vehicles when there is a sudden loss of traction due to external conditions such as rain or snow. It is a challenging control problem due to the presence of significant sideslip and nearly full saturation of the tires. In this paper, we focus on the control of drift maneuvers following circular paths with either fixed or moving centers, subject to change in the tire-ground interaction, which are common training tasks for drift enthusiasts and can therefore be used as benchmarks of the performance of drift control. In order to achieve the above tasks, we propose a novel hierarchical control architecture which decouples the curvature and center control of the trajectory. In particular, an outer loop stabilizes the center by tuning the target curvature, and an inner loop tracks the curvature using a feedforward/feedback controller enhanced by an $mathcal{L}_1$ adaptive component. The hierarchical architecture is flexible because the inner loop is task-agnostic and adaptive to changes in tire-road interaction, which allows the outer loop to be designed independent of low-level dynamics, opening up the possibility of incorporating sophisticated planning algorithms. We implement our control strategy on a simulation platform as well as on a 1/10 scale Radio-Control~(RC) car, and both the simulation and experiment results illustrate the effectiveness of our strategy in achieving the above described set of drift maneuvering tasks.
Self-driving cars and trucks, autonomous vehicles (AVs), should not be accepted by regulatory bodies and the public until they have much higher confidence in their safety and reliability -- which can most practically and convincingly be achieved by t esting. But existing testing methods are inadequate for checking the end-to-end behaviors of AV controllers against complex, real-world corner cases involving interactions with multiple independent agents such as pedestrians and human-driven vehicles. While test-driving AVs on streets and highways fails to capture many rare events, existing simulation-based testing methods mainly focus on simple scenarios and do not scale well for complex driving situations that require sophisticated awareness of the surroundings. To address these limitations, we propose a new fuzz testing technique, called AutoFuzz, which can leverage widely-used AV simulators API grammars. to generate semantically and temporally valid complex driving scenarios (sequences of scenes). AutoFuzz is guided by a constrained Neural Network (NN) evolutionary search over the API grammar to generate scenarios seeking to find unique traffic violations. Evaluation of our prototype on one state-of-the-art learning-based controller and two rule-based controllers shows that AutoFuzz efficiently finds hundreds of realistic traffic violations resembling real-world crashes. Further, fine-tuning the learning-based controller with the traffic violations found by AutoFuzz successfully reduced the traffic violations found in the new version of the AV controller software.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا