ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Performance Nanofluidic Osmotic Power Generation Enabled by Exterior Surface Charges under the Natural Salt Gradient

72   0   0.0 ( 0 )
 نشر من قبل Yinghua Qiu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-performance osmotic energy conversion (OEC) requires both high ionic selectivity and permeability in nanopores. Here, through systematical explorations of influences from individual charged nanopore surfaces on the performance of OEC, we find that the charged exterior surface on the low-concentration side (surfaceL) is essential to achieve high-performance osmotic power generation, which can significantly improve the ionic selectivity and permeability simultaneously. Detailed investigation of ionic transport indicates that electric double layers near charged surfaces provide high-speed passages for counterions. The charged surfaceL enhances cation diffusion through enlarging the effective diffusive area, and inhibits anion transport by electrostatic repulsion. Different areas of charged exterior surfaces have been considered to mimic membranes with different porosities in practical applications. Through adjusting the width of the charged ring region on the surfaceL, electric power in single nanopores increases from 0.3 to 3.4 pW with a plateau at the width of ~200 nm. The power density increases from 4200 to 4900 W/m2 and then decreases monotonously that reaches the commercial benchmark at the charged width of ~480 nm. While, energy conversion efficiency can be promoted from 4% to 26%. Our results provide useful guide in the design of nanoporous membranes for high-performance osmotic energy harvesting.

قيم البحث

اقرأ أيضاً

70 - Long Ma , Kabin Lin , Yinghua Qiu 2021
High-performance osmotic energy conversion (OEC) with perm-selective porous membrane requires both high ionic selectivity and permeability simultaneously. Here, hydrodynamic slip is considered on surfaces of nanopores to break the tradeoff between io nic selectivity and permeability, because it decreases the viscous friction at solid-liquid interfaces which can promote ionic diffusion during OEC. Taking advantage of simulations, influences from individual slipping surfaces on the OEC performance have been investigated, i.e. the slipping inner surface (surfaceinner) and exterior surfaces on the low- and high-concentration sides (surfaceL and surfaceH). Results show that the slipping surfaceL is crucial for high-performance OEC. For nanopores with various lengths, the slipping surfaceL simultaneously increases both ionic permeability and selectivity of nanopores, which results in both significantly enhanced electric power and energy conversion efficiency. While for nanopores longer than 30 nm, the slipping surfaceinner plays a dominant role in the increase of electric power, which induces a considerable decrease in energy conversion efficiency due to enhanced transport of both cations and anions. Considering the difficulty in hydrodynamic slip modification to the surfaceinner of nanopores, the surface modification to the surfaceL may be a better choice to achieve high-performance OEC. Our results provide feasible guidance to the design of porous membranes for high-performance osmotic energy harvesting.
Software Defined Networks (SDNs) have dramatically simplified network management. However, enabling pure SDNs to respond in real-time while handling massive amounts of data still remains a challenging task. In contrast, fog computing has strong poten tial to serve large surges of data in real-time. SDN control plane enables innovation, and greatly simplifies network operations and management thereby providing a promising solution to implement energy and performance aware SDN-enabled fog computing. Besides, power efficiency and performance evaluation in SDN-enabled fog computing is an area that has not yet been fully explored by the research community. We present a novel SDN-enabled fog architecture to improve power efficacy and performance by leveraging cooperative and non-cooperative policy-based computing. Preliminary results from extensive simulation demonstrate an improvement in the power utilization as well as the overall performance (i.e., processing time, response time). Finally, we discuss several open research issues that need further investigation in the future.
A quantum generalization of Natural Gradient Descent is presented as part of a general-purpose optimization framework for variational quantum circuits. The optimization dynamics is interpreted as moving in the steepest descent direction with respect to the Quantum Information Geometry, corresponding to the real part of the Quantum Geometric Tensor (QGT), also known as the Fubini-Study metric tensor. An efficient algorithm is presented for computing a block-diagonal approximation to the Fubini-Study metric tensor for parametrized quantum circuits, which may be of independent interest.
An all-optical measurement of high-order fractional molecular echoes is demonstrated by using high-order harmonic generation (HHG). Excited by a pair of time-delayed short laser pulses, the signatures of full and high order fractional (1/2 and 1/3) a lignment echoes are observed in the HHG signals measured from CO2 molecules at various time delays of the probe pulse. By increasing the time delay of the pump pulses, much higher order fractional (1/4) alignment echo is also observed in N2O molecules. With an analytic model based on the impulsive approximation, the spatiotemporal dynamics of the echo process are retrieved from the experiment. Compared to the typical molecular alignment revivals, high-order fractional molecular echoes are demonstrated to dephase more rapidly, which will open a new route towards the ultrashort-time measurement. The proposed HHG method paves an efficient way for accessing the high-order fractional echoes in molecules.
The non-equilibrium stationary coherences that form in donor-acceptor systems are investigated to determine their relationship to the efficiency of energy transfer to a neighboring reaction center. It is found that the effects of asymmetry in the dim er are generally detrimental to the transfer of energy. Four types of systems are examined, arising from combinations of localized trapping, delocalized (Forster) trapping, eigenstate dephasing and site basis dephasing. In the cases of site basis dephasing the interplay between the energy gap of the excited dimer states and the environment is shown to give rise to a turnover effect in the efficiency under weak dimer coupling conditions. Furthermore, the nature of the coherences and associated flux are interpreted in terms of pathway interference effects. In addition, regardless of the cases considered, the ratio of the real part and the imaginary part of the coherences in the energy-eigenbasis tends to a constant value in the steady state limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا