ترغب بنشر مسار تعليمي؟ اضغط هنا

Simultaneous Localization and Mapping Related Datasets: A Comprehensive Survey

306   0   0.0 ( 0 )
 نشر من قبل Yuanzhi Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Due to the complicated procedure and costly hardware, Simultaneous Localization and Mapping (SLAM) has been heavily dependent on public datasets for drill and evaluation, leading to many impressive demos and good benchmark scores. However, with a huge contrast, SLAM is still struggling on the way towards mature deployment, which sounds a warning: some of the datasets are overexposed, causing biased usage and evaluation. This raises the problem on how to comprehensively access the existing datasets and correctly select them. Moreover, limitations do exist in current datasets, then how to build new ones and which directions to go? Nevertheless, a comprehensive survey which can tackle the above issues does not exist yet, while urgently demanded by the community. To fill the gap, this paper strives to cover a range of cohesive topics about SLAM related datasets, including general collection methodology and fundamental characteristic dimensions, SLAM related tasks taxonomy and datasets categorization, introduction of state-of-the-arts, overview and comparison of existing datasets, review of evaluation criteria, and analyses and discussions about current limitations and future directions, looking forward to not only guiding the dataset selection, but also promoting the dataset research.



قيم البحث

اقرأ أيضاً

Motivated by the tremendous progress we witnessed in recent years, this paper presents a survey of the scientific literature on the topic of Collaborative Simultaneous Localization and Mapping (C-SLAM), also known as multi-robot SLAM. With fleets of self-driving cars on the horizon and the rise of multi-robot systems in industrial applications, we believe that Collaborative SLAM will soon become a cornerstone of future robotic applications. In this survey, we introduce the basic concepts of C-SLAM and present a thorough literature review. We also outline the major challenges and limitations of C-SLAM in terms of robustness, communication, and resource management. We conclude by exploring the areas current trends and promising research avenues.
This paper presents a fully hardware synchronized mapping robot with support for a hardware synchronized external tracking system, for super-precise timing and localization. We also employ a professional, static 3D scanner for ground truth map collec tion. Three datasets are generated to evaluate the performance of mapping algorithms within a room and between rooms. Based on these datasets we generate maps and trajectory data, which is then fed into evaluation algorithms. The mapping and evaluation procedures are made in a very easily reproducible manner for maximum comparability. In the end we can draw a couple of conclusions about the tested SLAM algorithms.
LiDAR is playing a more and more essential role in autonomous driving vehicles for objection detection, self localization and mapping. A single LiDAR frequently suffers from hardware failure (e.g., temporary loss of connection) due to the harsh vehic le environment (e.g., temperature, vibration, etc.), or performance degradation due to the lack of sufficient geometry features, especially for solid-state LiDARs with small field of view (FoV). To improve the system robustness and performance in self-localization and mapping, we develop a decentralized framework for simultaneous calibration, localization and mapping with multiple LiDARs. Our proposed framework is based on an extended Kalman filter (EKF), but is specially formulated for decentralized implementation. Such an implementation could potentially distribute the intensive computation among smaller computing devices or resources dedicated for each LiDAR and remove the single point of failure problem. Then this decentralized formulation is implemented on an unmanned ground vehicle (UGV) carrying 5 low-cost LiDARs and moving at $1.3m/s$ in urban environments. Experiment results show that the proposed method can successfully and simultaneously estimate the vehicle state (i.e., pose and velocity) and all LiDAR extrinsic parameters. The localization accuracy is up to 0.2% on the two datasets we collected. To share our findings and to make contributions to the community, meanwhile enable the readers to verify our work, we will release all our source codes and hardware design blueprint on our Github.
A novel simultaneous localization and radio mapping (SLARM) framework for communication-aware connected robots in the unknown indoor environment is proposed, where the simultaneous localization and mapping (SLAM) algorithm and the global geographic m ap recovery (GGMR) algorithm are leveraged to simultaneously construct a geographic map and a radio map named a channel power gain map. Specifically, the geographic map contains the information of a precise layout of obstacles and passable regions, and the radio map characterizes the position-dependent maximum expected channel power gain between the access point and the connected robot. Numerical results show that: 1) The pre-defined resolution in the SLAM algorithm and the proposed GGMR algorithm significantly affect the accuracy of the constructed radio map; and 2) The accuracy of radio map constructed by the SLARM framework is more than 78.78% when the resolution value smaller than 0.15m, and the accuracy reaches 91.95% when the resolution value is pre-defined as 0.05m.
We present the first fully distributed multi-robot system for dense metric-semantic Simultaneous Localization and Mapping (SLAM). Our system, dubbed Kimera-Multi, is implemented by a team of robots equipped with visual-inertial sensors, and builds a 3D mesh model of the environment in real-time, where each face of the mesh is annotated with a semantic label (e.g., building, road, objects). In Kimera-Multi, each robot builds a local trajectory estimate and a local mesh using Kimera. Then, when two robots are within communication range, they initiate a distributed place recognition and robust pose graph optimization protocol with a novel incremental maximum clique outlier rejection; the protocol allows the robots to improve their local trajectory estimates by leveraging inter-robot loop closures. Finally, each robot uses its improved trajectory estimate to correct the local mesh using mesh deformation techniques. We demonstrate Kimera-Multi in photo-realistic simulations and real data. Kimera-Multi (i) is able to build accurate 3D metric-semantic meshes, (ii) is robust to incorrect loop closures while requiring less computation than state-of-the-art distributed SLAM back-ends, and (iii) is efficient, both in terms of computation at each robot as well as communication bandwidth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا