ﻻ يوجد ملخص باللغة العربية
Elastocaloric cooling has been identified as a promising alternative to high global warming potential vapor compression cooling. Two key bottlenecks to adoption are the need for bulky/expensive actuators to provide sufficient uniaxial stress and inadequate elastocaloric material fatigue life. This paper defines the physics that govern performance of axisymmetric flexural bending for use as an emerging low-force and low-fatigue elastocaloric heating and cooling mechanism and further demonstrates a continuous rotary-driven cooling prototype using polycrcrystalline Ni50.7Ti48.9. Elastocaloric material performance is determined using infrared thermography during uniaxial-tension and four-point bending thermomechanical testing. A systematic study reveals the effects of strain rate (from 0.001 to 0.025 s-1), maximum strain (from 2 to 8%), and strain mode on the temperature evolution, mechanical response, and coefficient of performance. Four-point bending experiments demonstrate a temperature reduction up to 11.3{deg}C, material coefficients of performance between 2.31 and 21.71, and a 6.09- to 7.75-fold reduction in required actuation force compared to uniaxial tension. The absence of Luders bands and reduced mechanical dissipation during flexure represent reduced microstructure degradation and improved fatigue life. The rotary-based elastocaloric cooling prototype is shown to provide similar thermomechanical performance with the added benefit of discrete hot and cold zones, continuous cooling, inexpensive rotary actuation, and scalability, which represents a significant advancement for compact, long lifetime, and inexpensive elastocaloric cooling.
With the aim of improving the performance of classical paramagnetic salts for adiabatic refrigeration processes at the sub-Kelvin range, relevant thermodynamic parameters of some new Yb-based intermetallic compounds are analyzed and compared. Two alt
The negatively-charged nitrogen vacancy (NV$^-$) centre in diamond is a remarkable optical quantum sensor for a range of applications including, nanoscale thermometry, magnetometry, single photon generation, quantum computing, and communication. Howe
Studying the response of materials to strain can elucidate subtle properties of electronic structure in strongly correlated materials. So far, mostly the relation between strain and resistivity, the so called elastoresistivity, has been investigated.
Tunneling atomic force microscopy (TUNA) was used at ambient conditions to measure the current-voltage ($I$-$V$) characteristics at clean surfaces of highly oriented graphite samples with Bernal and rhombohedral stacking orders. The characteristic cu
The existence and feasibility of the multicaloric, polycrystalline material 0.8Pb(Fe1/2Nb1/2)O3-0.2Pb(Mg1/2W1/2)O3, exhibiting magnetocaloric and electrocaloric properties, are demonstrated. Both the electrocaloric and magnetocaloric effects are obse