ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-Force Elastocaloric Refrigeration via Bending

73   0   0.0 ( 0 )
 نشر من قبل Darin Sharar
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Elastocaloric cooling has been identified as a promising alternative to high global warming potential vapor compression cooling. Two key bottlenecks to adoption are the need for bulky/expensive actuators to provide sufficient uniaxial stress and inadequate elastocaloric material fatigue life. This paper defines the physics that govern performance of axisymmetric flexural bending for use as an emerging low-force and low-fatigue elastocaloric heating and cooling mechanism and further demonstrates a continuous rotary-driven cooling prototype using polycrcrystalline Ni50.7Ti48.9. Elastocaloric material performance is determined using infrared thermography during uniaxial-tension and four-point bending thermomechanical testing. A systematic study reveals the effects of strain rate (from 0.001 to 0.025 s-1), maximum strain (from 2 to 8%), and strain mode on the temperature evolution, mechanical response, and coefficient of performance. Four-point bending experiments demonstrate a temperature reduction up to 11.3{deg}C, material coefficients of performance between 2.31 and 21.71, and a 6.09- to 7.75-fold reduction in required actuation force compared to uniaxial tension. The absence of Luders bands and reduced mechanical dissipation during flexure represent reduced microstructure degradation and improved fatigue life. The rotary-based elastocaloric cooling prototype is shown to provide similar thermomechanical performance with the added benefit of discrete hot and cold zones, continuous cooling, inexpensive rotary actuation, and scalability, which represents a significant advancement for compact, long lifetime, and inexpensive elastocaloric cooling.



قيم البحث

اقرأ أيضاً

320 - Julian G. Sereni 2018
With the aim of improving the performance of classical paramagnetic salts for adiabatic refrigeration processes at the sub-Kelvin range, relevant thermodynamic parameters of some new Yb-based intermetallic compounds are analyzed and compared. Two alt ernative potential applications are recognized, like those requiring fixed temperature reference points to be reached applying low intensity magnetic fields and those requiring controlled thermal drift for temperature dependent studies. Different thermomagnetic entropy S(T,B) trajectories were identified depending on respective specific heat behaviors at very low temperature. To gain insight into the criteria to be used for a proper choice of suitable materials in respective applications, some simple relationships are proposed to facilitate a comparative description of their magnetocaloric behavior, including the referent Cerium-Magnesium-Nitride (CMN) salt in these comparisons
The negatively-charged nitrogen vacancy (NV$^-$) centre in diamond is a remarkable optical quantum sensor for a range of applications including, nanoscale thermometry, magnetometry, single photon generation, quantum computing, and communication. Howe ver, to date the performance of these techniques using NV$^-$ centres has been limited by the thermally-induced spectral wandering of NV$^-$ centre photoluminescence due to detrimental photothermal heating. Here we demonstrate that solid-state laser refrigeration can be used to enable rapid (ms) optical temperature control of nitrogen vacancy doped nanodiamond (NV$^-$:ND) quantum sensors in both atmospheric and textit{in vacuo} conditions. Nanodiamonds are attached to ceramic microcrystals including 10% ytterbium doped yttrium lithium fluoride (Yb:LiYF$_4$) and sodium yttrium fluoride (Yb:NaYF$_4$) by van der Waals bonding. The fluoride crystals were cooled through the efficient emission of upconverted infrared photons excited by a focused 1020 nm laser beam. Heat transfer to the ceramic microcrystals cooled the adjacent NV$^-$:NDs by 10 and 27 K at atmospheric pressure and $sim$10$^{-3}$ Torr, respectively. The temperature of the NV$^-$:NDs was measured using both Debye-Waller factor (DWF) thermometry and optically detected magnetic resonance (ODMR), which agree with the temperature of the laser cooled ceramic microcrystal. Stabilization of thermally-induced spectral wandering of the NV$^{-}$ zero-phonon-line (ZPL) is achieved by modulating the 1020 nm laser irradiance. The demonstrated cooling of NV$^-$:NDs using an optically cooled microcrystal opens up new possibilities for rapid feedback-controlled cooling of a wide range of nanoscale quantum materials.
Studying the response of materials to strain can elucidate subtle properties of electronic structure in strongly correlated materials. So far, mostly the relation between strain and resistivity, the so called elastoresistivity, has been investigated. The elastocaloric effect is a second rank tensor quantity describing the relation between entropy and strain. In contrast to the elastoresistivity, the elastocaloric effect is a thermodynamic quantity. Experimentally, elastocaloric effect measurements are demanding since the thermodynamic conditions during the measurement have to be well controlled. Here we present a technique to measure the elastocaloric effect under quasi adiabatic conditions. The technique is based on oscillating strain, which allows for increasing the frequency of the elastocaloric effect above the thermal relaxation rate of the sample. We apply the technique to Co-doped iron pnictide superconductors and show that the thermodynamic signatures of second order phase transitions in the elastocaloric effect closely follow those observed in calorimetry experiments. In contrast to the heat capacity, the electronic signatures in the elastocaloric effect are measured against a small phononic background even at high temperatures, establishing this technique as a powerful complimentary tool for extracting the entropy landscape proximate to a continuous phase transition.
Tunneling atomic force microscopy (TUNA) was used at ambient conditions to measure the current-voltage ($I$-$V$) characteristics at clean surfaces of highly oriented graphite samples with Bernal and rhombohedral stacking orders. The characteristic cu rves measured on Bernal-stacked graphite surfaces can be understood with an ordinary self-consistent semiconductor modeling and quantum mechanical tunneling current derivations. We show that the absence of a voltage region without measurable current in the $I$-$V$ spectra is not a proof of the lack of an energy band gap. It can be induced by a surface band bending due to a finite contact potential between tip and sample surface. Taking this into account in the model, we succeed to obtain a quantitative agreement between simulated and measured tunnel spectra for band gaps $(12 ldots 37)$,meV, in agreement to those extracted from the exponential temperature decrease of the longitudinal resistance measured in graphite samples with Bernal stacking order. In contrast, the surface of relatively thick graphite samples with rhombohedral stacking reveals the existence of a maximum in the first derivative $dI/dV$, a behavior compatible with the existence of a flat band. The characteristics of this maximum are comparable to those obtained at low temperatures with similar techniques.
The existence and feasibility of the multicaloric, polycrystalline material 0.8Pb(Fe1/2Nb1/2)O3-0.2Pb(Mg1/2W1/2)O3, exhibiting magnetocaloric and electrocaloric properties, are demonstrated. Both the electrocaloric and magnetocaloric effects are obse rved over a broad temperature range below room temperature. The maximum magnetocaloric temperature change of ~0.26 K is obtained with a magnetic-field amplitude of 70 kOe at a temperature of 5 K, while the maximum electrocaloric temperature change of ~0.25 K is obtained with an electric-field amplitude of 60 kV/cm at a temperature of 180 K. The material allows a multicaloric cooling mode or a separate caloric-modes operation depending on the origin of the external field and the temperature at which the field is applied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا