ﻻ يوجد ملخص باللغة العربية
Extending nanostructures into the third dimension has become a major research avenue in modern magnetism, superconductivity and spintronics, because of geometry-, curvature- and topology-induced phenomena. Here, we introduce Co-Fe nanovolcanoes-nanodisks overlaid by nanorings-as purpose-engineered 3D architectures for nanomagnonics, fabricated by focused electron beam induced deposition. We use both perpendicular spin-wave resonance measurements and micromagnetic simulations to demonstrate that the rings encircling the volcano craters harbor the highest-frequency eigenmodes, while the lower-frequency eigenmodes are concentrated within the volcano crater, due to the non-uniformity of the internal magnetic field. By varying the crater diameter, we demonstrate the deliberate tuning of higher-frequency eigenmodes without affecting the lowest-frequency mode. Thereby, the extension of 2D nanodisks into the third dimension allows one to engineer their lowest eigenfrequency by using 3D nanovolcanoes with 30% smaller footprints. The presented nanovolcanoes can be viewed as multi-mode microwave resonators and 3D building blocks for nanomagnonics.
Media with engineered magnetization are essential building blocks in superconductivity, magnetism and magnon spintronics. However, the established thin-film and lithographic techniques insufficiently suit the realization of planar components with on-
Building nanotechnological analogues of naturally occurring magnetic structures has proven to be a powerful approach to studying topics like geometry-induced magnetic frustration and to provide model systems for statistical physics. Moreover, it prac
In this work, we study experimentally by broadband ferromagnetic resonance measurements, the dependence of the spin-wave excitation spectra on the magnetic applied field in CoFeB meander-shaped films. Two different orientations of the external magnet
Magnonics is seen nowadays as a candidate technology for energy-efficient data processing in classical and quantum systems. Pronounced nonlinearity, anisotropy of dispersion relations and phase degree of freedom of spin waves require advanced methodo
The semiconductor-metal junction is one of the most critical factors for high performance electronic devices. In two-dimensional (2D) semiconductor devices, minimizing the voltage drop at this junction is particularly challenging and important. Despi