ﻻ يوجد ملخص باللغة العربية
We study the disorder-induced phase transition of higher-order Weyl semimetals (HOWSMs) and the fate of the topological features of disordered HOWSMs. We obtain a global phase diagram of HOWSMs according to the scaling theory of Anderson localization. Specifically, a phase transition from the Weyl semimetal (WSM) to the HOWSM is uncovered, distinguishing the disordered HOWSMs from the traditional WSMs. Further, we confirm the robustness of Weyl-nodes for HOWSMs. Interestingly, the unique topological properties of HOWSMs show different behaviors: (i) the quantized quadrupole moment and the corresponding quantized charge of hinge states are fragile to weak disorder; (ii) the hinge states show moderate stability which enables the feasibility in experimental observation. Our study deepens the understanding of the topological nature of HOWSMs and paves a possible way to the characterization of such a phase in experiments.
A higher-order topological insulator is a new concept of topological states of matter, which is characterized by the emergent boundary states whose dimensionality is lower by more than two compared with that of the bulk, and draws a considerable inte
We investigate higher-order Weyl semimetals (HOWSMs) having bulk Weyl nodes attached to both surface and hinge Fermi arcs. We identify a new type of Weyl node, that we dub a $2nd$ order Weyl node, that can be identified as a transition in momentum sp
Higher-order topology yields intriguing multidimensional topological phenomena, while Weyl semimetals have unconventional properties such as chiral anomaly. However, so far, Weyl physics remain disconnected with higher-order topology. Here, we report
We study the dynamics of Dirac and Weyl electrons in disordered point-node semimetals. The ballistic feature of the transport is demonstrated by simulating the wave-packet dynamics on lattice models. We show that the ballistic transport survives unde
For first-order topological semimetals, non-Hermitian perturbations can drive the Weyl nodes into Weyl exceptional rings having multiple topological structures and no Hermitian counterparts. Recently, it was discovered that higher-order Weyl semimeta