ترغب بنشر مسار تعليمي؟ اضغط هنا

VVV survey near-infrared colour catalogue of known variable stars

93   0   0.0 ( 0 )
 نشر من قبل F\\'abio Herpich
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. The Vista Variables in the Via Lactea (VVV) near-infrared variability survey explores some of the most complex regions of the Milky Way bulge and disk in terms of high extinction and high crowding. Aims. We add a new wavelength dimension to the optical information available at the American Association of Variable Star Observers International Variable Star Index (VSX-AAVSO) catalogue to test the VVV survey near-infrared photometry to better characterise these objects. Methods. We cross-matched the VVV and the VSX-AAVSO catalogues along with Gaia Data Release 2 photometry and parallax. Results. We present a catalogue that includes accurate individual coordinates, near-infrared magnitudes (ZY JHKs), extinctions Aks, and distances based on Gaia parallaxes. We also show the near-infrared CMDs and spatial distributions for the different VSX types of variable stars, including important distance indicators, such as RR Lyrae, Cepheids, and Miras. By analysing the photometric flags in our catalogue, we found that about 20% of the stars with measured and verified variability are flagged as non-stellar sources, even when they are outside of the saturation and/or noise regimes. Additionally, we pair-matched our sample with the VIVA catalogue and found that more than half of our sources are missing from the VVV variability list, mostly due to observations with low signal-to-noise ratio or photometric problems with a low percentage due to failures in the selection process. Conclusions. Our results suggest that the current knowledge of the variability in the Galaxy is biased to nearby stars with low extinction. The present catalogue also provides the groundwork for characterising the results of future large variability surveys such as the Vera C. Rubin Observatory Legacy Survey of Space and Time in the highly crowded and reddened regions of the Galactic plane, as well as follow-up campaigns for

قيم البحث

اقرأ أيضاً

We present VIRAC version 1, a near-infrared proper motion and parallax catalogue of the VISTA VVV survey for 312,587,642 unique sources averaged across all overlapping pawprint and tile images covering 560 deg$^2$ of the bulge of the Milky Way and so uthern disk. The catalogue includes 119 million high quality proper motion measurements, of which 47 million have statistical uncertainties below 1 mas yr$^{-1}$. In the 11$<K_s<$14 magnitude range the high quality motions have a median uncertainty of 0.67 mas yr$^{-1}$. The catalogue also includes 6,935 sources with quality-controlled 5 $sigma$ parallaxes with a median uncertainty of 1.1 mas. The parallaxes show reasonable agreement with the TYCHO-Gaia Astrometric Solution (TGAS), though caution is advised for data with modest significance. The SQL database housing the data is made available via the web. We give example applications for studies of Galactic structure, nearby objects (low mass stars and brown dwarfs, subdwarfs, white dwarfs) and kinematic distance measurements of YSOs. Nearby objects discovered include LTT 7251 B, an L7 benchmark companion to a G dwarf with over 20 published elemental abundances, a bright L sub-dwarf, VVV 1256-6202, with extremely blue colours and nine new members of the 25 pc sample. We also demonstrate why this catalogue remains useful in the era of Gaia. Futur
Near-IR data of Classical Novae contain useful information about the ejected gas mass and the thermal emission by dust formed during eruption, and provide independent methods to classify the objects according to the colour of their progenitors, and t he fading rate and features seen after eruption. The VISTA Variables in the Via Lactea survey (VVV) is a near-IR ESO Public Survey mapping the MW bulge and southern plane. Data taken during 2010-2011 covered the entire area in the JHKs bands plus some epochs in Ks-band of the ongoing VVV variability campaign. We used the novae list provided by VSX/AAVSO catalogue to search for all objects within the VVV area. We used the VVV data to create a near-IR catalogue of the known Galactic novae in the 562 sq.deg. area covered by VVV. The VVV near-IR catalogue of novae contains JHKs photometry of 93 objects completed as of December 2012. We also checked in the ongoing VVV variability campaign for the light-curves of novae that erupted in the last years. VVV images can also be used to discover and study novae by searching for the expanding shell. Since objects are seen at different distances and reddening levels, the colour-magnitude and colour-colour diagrams show the novae spread in magnitude as well as in colour. Dereddened colours and reddening-free indices were used with caution and cannot be a good approach in all cases since the distance and spectral features prevent more conclusive results for some extreme objects. Light-curves for some recent novae are presented. Thanks to its high spatial resolution in the near-IR, and large Ks-range, the VVV survey can be a major contributor for the search and study of novae in the most crowded and high-extinction regions of the Milky Way. The VVV survey area contains ~35 of all known novae in the Galaxy.
This project is a massive near-infrared (NIR) search for variable stars in highly reddened and obscured open cluster (OC) fields projected on regions of the Galactic bulge and disk. The search is performed using photometric NIR data in the $J$-, $H$- and $K_s$- bands obtained from the Vista Variables in the Via Lactea (VVV) Survey. We performed in each cluster field a variability search using Stetsons variability statistics to select the variable candidates. Later, those candidates were subjected to a frequency analysis using the Generalized Lomb-Scargle and the Phase Dispersion Minimization algorithms. The number of independent observations range between 63 and 73. The newly discovered variables in this study, 157 in total in three different known OCs, are classified based on their light curve shapes, periods, amplitudes and their location in the corresponding color-magnitude $(J-K_s,K_s)$ and color-color $(H-K_s,J-H)$ diagrams. We found 5 possible Cepheid stars which, based on the period-luminosity relation, are very likely type II Cepheids located behind the bulge. Among the newly discovered variables, there are eclipsing binaries, $delta$ Scuti, as well as background RR Lyrae stars. Using the new version of the Wilson & Devinney code as well as the Physics Of Eclipsing Binaries (PHOEBE) code, we analyzed some of the best eclipsing binaries we discovered. Our results show that these studied systems turn out to be ranging from detached to double-contact binaries, with low eccentricities and high inclinations of approximately $80^{circ}$. Their surface temperatures range between $3500$K and $8000$K.
85 - Xiaodian Chen 2018
We have compiled the first all-sky mid-infrared variable-star catalog based on Wide-field Infrared Survey Explorer (WISE) five-year survey data. Requiring more than 100 detections for a given object, 50,282 carefully and robustly selected periodic va riables are discovered, of which 34,769 (69%) are new. Most are located in the Galactic plane and near the equatorial poles. A method to classify variables based on their mid-infrared light curves is established using known variable types in the General Catalog of Variable Stars. Careful classification of the new variables results in a tally of 21,427 new EW-type eclipsing binaries, 5654 EA-type eclipsing binaries, 1312 Cepheids, and 1231 RR Lyraes. By comparison with known variables available in the literature, we estimate that the misclassification rate is 5% and 10% for short- and long-period variables, respectively. A detailed comparison of the types, periods, and amplitudes with variables in the Catalina catalog shows that the independently obtained classifications parameters are in excellent agreement. This enlarged sample of variable stars will not only be helpful to study Galactic structure and extinction properties, they can also be used to constrain stellar evolution theory and as potential candidates for the James Webb Space Telescope.
Numerous eruptive variable young stellar objects (YSOs), mostly Class I systems, were recently detected by the near-infrared Vista Variables in the Via Lactea (VVV) survey. We present an exploratory near-infrared spectroscopic variability study of 14 eruptive YSOs. The variations were sampled over 1-day and 1 to 2-year intervals and analysed in combination with VVV light curves. CO overtone absorption features are observed on 3 objects with FUor-like spectra: all show deeper absorption when they are brighter. This implies stronger emission from the circumstellar disc with a steeper vertical temperature gradient when the accretion rate is higher. This confirms the nature of fast VVV FUor-like events, in line with the accepted picture for classical FUors. The absence of Br$gamma$ emission in a FUor-like object declining to pre-outburst brightness suggests that reconstruction of the stellar magnetic field is a slow process. Within the 1-day timescale, 60% of H$_2$-emitting YSOs show significant but modest variation, and 2/6 sources have large variations in Br$gamma$. Over year-long timescales, H$_2$ flux variations remain modest despite up to 1.8 mag variation in $K_s$. This indicates that emission from the molecular outflow usually arises further from the protostar and is unaffected by relatively large changes in accretion rate on year-long timescales. Two objects show signs of on/off magnetospheric accretion traced by Br$gamma$ emission. In addition, a 60% inter-night brightening of the H$_2$ outflow is detected in one YSO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا