ﻻ يوجد ملخص باللغة العربية
We introduce a new paradigm for scaling simulations with projected entangled-pair states (PEPS) for critical strongly-correlated systems, allowing for reliable extrapolations of PEPS data with relatively small bond dimensions $D$. The key ingredient consists of using the effective correlation length $chi$ for inducing a collapse of data points, $f(D,chi)=f(xi(D,chi))$, for arbitrary values of $D$ and the environment bond dimension $chi$. As such we circumvent the need for extrapolations in $chi$ and can use many distinct data points for a fixed value of $D$. Here, we need that the PEPS has been optimized using a fixed-$chi$ gradient method, which can be achieved using a novel tensor-network algorithm for finding fixed points of 2-D transfer matrices, or by using the formalism of backwards differentiation. We test our hypothesis on the critical 3-D dimer model, the 3-D classical Ising model, and the 2-D quantum Heisenberg model.
We show that two different tensors defining the same translational invariant injective Projected Entangled Pair State (PEPS) in a square lattice must be the same up to a trivial gauge freedom. This allows us to characterize the existence of any local
We introduce plaquette projected entangled-pair states, a class of states in a lattice that can be generated by applying sequential unitaries acting on plaquettes of overlapping regions. They satisfy area-law entanglement, possess long-range correlat
The projected entangled pair states (PEPS) methods have been proved to be powerful tools to solve the strongly correlated quantum many-body problems in two-dimension. However, due to the high computational scaling with the virtual bond dimension $D$,
Tensor network states, and in particular projected entangled pair states (PEPS), suggest an innovative approach for the study of lattice gauge theories, both from a pure theoretic point of view, and as a tool for the analysis of the recent proposals
Matrix Product States (MPS) and Projected Entangled Pair States (PEPS) are powerful analytical and numerical tools to assess quantum many-body systems in one and higher dimensions, respectively. While MPS are comprehensively understood, in PEPS funda