ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent Progress of the Computational 2D Materials Database (C2DB)

92   0   0.0 ( 0 )
 نشر من قبل Alireza Taghizadeh Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The C2DB is a highly curated open database organizing a wealth of computed properties for more than 4000 atomically thin two-dimensional (2D) materials. Here we report on new materials and properties that were added to the database since its first release in 2018. The set of new materials comprise several hundred monolayers exfoliated from experimentally known layered bulk materials, (homo)bilayers in various stacking configurations, native point defects in semiconducting monolayers, and chalcogen/halogen Janus monolayers. The new properties include exfoliation energies, Bader charges, spontaneous polarisations, Born charges, infrared polarisabilities, piezoelectric tensors, band topology invariants, exchange couplings, Raman- and second harmonic generation spectra. We also describe refinements of the employed material classification schemes, upgrades of the computational methodologies used for property evaluations, as well as significant enhancements of the data documentation and provenance. Finally, we explore the performance of Gaussian process-based regression for efficient prediction of mechanical and electronic materials properties. The combination of open access, detailed documentation, and extremely rich materials property data sets make the C2DB a unique resource that will advance the science of atomically thin materials.

قيم البحث

اقرأ أيضاً

We analyze the occurrence of in-plane anisotropy in the electronic, magnetic, elastic and transport properties of more than one thousand 2D materials from the C2DB database. We identify hundreds of anisotropic materials and classify them according to their point group symmetry and degree of anisotropy. A statistical analysis reveals that a lower point group symmetry and a larger amount of different elements in the structure favour all types of anisotropies, which could be relevant for future materials design approaches. Besides, we identify novel compounds, predicted to be easily exfoliable from a parent bulk compound, with anisotropies that largely outscore those of already known 2D materials. Our findings provide a comprehensive reference for future studies of anisotropic response in atomically-thin crystals and point to new previously unexplored materials for the next generation of anisotropic 2D devices.
A method was developed to calculate the free energy of 2D materials on substrates and was demonstrated by the system of graphene and {gamma}-graphyne on copper substrate. The method works at least 3 orders faster than state-of-the-art algorithms, and the accuracy was tested by molecular dynamics simulations, showing that the precision for calculations of the internal energy achieves up to 0.03% in a temperature range from 100 to 1300K. As expected, the calculated the free energy of a graphene sheet on Cu (111) or Ni (111) surface in a temperature range up to 3000K is always smaller than the one of a {gamma}-graphyne sheet with the same number of C atoms, which is consistent with the fact that growth of graphene on the substrates is much easier than {gamma}-graphyne.
83 - Lishu Zhang , Jun Zhou , Hui Li 2021
As Moores law is gradually losing its effectiveness, developing alternative high-speed and low-energy-consuming information technology with post-silicon advanced materials is urgently needed. The successful application of tunneling magnetoresistance (TMR) in magnetic tunnel junctions (MTJs) has given rise to a tremendous economic impact on magnetic informatics, including MRAM, radio-frequency sensors, microwave generators and neuromorphic computing networks. The emergence of two-dimensional (2D) materials brings opportunities for MTJs based on 2D materials which have many attractive characters and advantages. Especially, the recently discovered intrinsic 2D ferromagnetic materials with high spin-polarization hold the promise for next-generation nanoscale MTJs. With the development of advanced 2D materials, many efforts on MTJs with 2D materials have been made both theoretically and experimentally. Various 2D materials, such as semi-metallic graphene, insulating h-BN, semiconducting MoS2, magnetic semiconducting CrI3, magnetic metallic Fe3GeTe2 and some other recently emerged 2D materials are discussed as the electrodes and/or central scattering materials of MTJs in this review. We discuss the fundamental and main issues facing MTJs, and review the current progress made with 2D MTJs, briefly comment on work with some specific 2D materials, and highlight how they address the current challenges in MTJs, and finally offer an outlook and perspective of 2D MTJs.
Motivated by recent advances on local conductance measurement techniques at the nanoscale, timely questions are being raised about what possible information can be extracted from a disordered material by selectively interrogating its transport proper ties. Here we demonstrate how an inversion technique originally developed to identify the number of scatterers in a quantum device can be adapted to a multi-terminal setup in order to provide detailed information about the spatial distribution of impurities on the surface of a 2D material. The methodology input are conductance readings (for instance, as a function of the chemical potential) between different electrode pairs, the output being the spatially resolved impurity density. We show that the obtained spatial resolution depends not only on the number of conductance measurements but also on the electrode dimensions. Furthermore, when implemented with electrodes in a grid-like geometry, this inversion procedure resembles a Sudoku puzzle in which the compositions of different sectors of a device are found by imposing that they must add up to specific constrained values established for the grid rows and columns. We argue that this technique may be used with other quantities besides the conductance, paving the way to alternative new ways of extracting information from a disordered material through the selective probing of local quantities.
We introduce the Computational 2D Materials Database (C2DB), which organises a variety of structural, thermodynamic, elastic, electronic, magnetic, and optical properties of around 1500 two-dimensional materials distributed over more than 30 differen t crystal structures. Material properties are systematically calculated by state-of-the art density functional theory and many-body perturbation theory (G$_0!$W$!_0$ and the Bethe-Salpeter Equation for $sim$200 materials) following a semi-automated workflow for maximal consistency and transparency. The C2DB is fully open and can be browsed online or downloaded in its entirety. In this paper, we describe the workflow behind the database, present an overview of the properties and materials currently available, and explore trends and correlations in the data. Moreover, we identify a large number of new potentially synthesisable 2D materials with interesting properties targeting applications within spintronics, (opto-)electronics, and plasmonics. The C2DB offers a comprehensive and easily accessible overview of the rapidly expanding family of 2D materials and forms an ideal platform for computational modeling and design of new 2D materials and van der Waals heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا