ترغب بنشر مسار تعليمي؟ اضغط هنا

An Interaction Neyman-Scott Point Process Model for Coronavirus Disease-19

186   0   0.0 ( 0 )
 نشر من قبل Won Chang
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

With rapid transmission, the coronavirus disease 2019 (COVID-19) has led to over 2 million deaths worldwide, posing significant societal challenges. Understanding the spatial patterns of patient visits and detecting the local spreading events are crucial to controlling disease outbreaks. We analyze highly detailed COVID-19 contact tracing data collected from Seoul, which provides a unique opportunity to understand the mechanism of patient visit occurrence. Analyzing contact tracing data is challenging because patient visits show strong clustering patterns while clusters of events may have complex interaction behavior. To account for such behaviors, we develop a novel interaction Neyman-Scott process that regards the observed patient visit events as offsprings generated from a parent spreading event. Inference for such models is complicated since the likelihood involves intractable normalizing functions. To address this issue, we embed an auxiliary variable algorithm into our Markov chain Monte Carlo. We fit our model to several simulated and real data examples under different outbreak scenarios and show that our method can describe spatial patterns of patient visits well. We also provide visualization tools that can inform public health interventions for infectious diseases such as social distancing.



قيم البحث

اقرأ أيضاً

In this paper, we build a mechanistic system to understand the relation between a reduction in human mobility and Covid-19 spread dynamics within New York City. To this end, we propose a multivariate compartmental model that jointly models smartphone mobility data and case counts during the first 90 days of the epidemic. Parameter calibration is achieved through the formulation of a general Bayesian hierarchical model to provide uncertainty quantification of resulting estimates. The open-source probabilistic programming language Stan is used for the requisite computation. Through sensitivity analysis and out-of-sample forecasting, we find our simple and interpretable model provides evidence that reductions in human mobility altered case dynamics.
Recent evidence has shown that structural magnetic resonance imaging (MRI) is an effective tool for Alzheimers disease (AD) prediction and diagnosis. While traditional MRI-based diagnosis uses images acquired at a single time point, a longitudinal st udy is more sensitive and accurate in detecting early pathological changes of the AD. Two main difficulties arise in longitudinal MRI-based diagnosis: (1) the inconsistent longitudinal scans among subjects (i.e., different scanning time and different total number of scans); (2) the heterogeneous progressions of high-dimensional regions of interest (ROIs) in MRI. In this work, we propose a novel feature selection and estimation method which can be applied to extract features from the heterogeneous longitudinal MRI. A key ingredient of our method is the combination of smoothing splines and the $l_1$-penalty. We perform experiments on the Alzheimers Disease Neuroimaging Initiative (ADNI) database. The results corroborate the advantages of the proposed method for AD prediction in longitudinal studies.
Arctic sea ice plays an important role in the global climate. Sea ice models governed by physical equations have been used to simulate the state of the ice including characteristics such as ice thickness, concentration, and motion. More recent models also attempt to capture features such as fractures or leads in the ice. These simulated features can be partially misaligned or misshapen when compared to observational data, whether due to numerical approximation or incomplete physics. In order to make realistic forecasts and improve understanding of the underlying processes, it is necessary to calibrate the numerical model to field data. Traditional calibration methods based on generalized least-square metrics are flawed for linear features such as sea ice cracks. We develop a statistical emulation and calibration framework that accounts for feature misalignment and misshapenness, which involves optimally aligning model output with observed features using cutting edge image registration techniques. This work can also have application to other physical models which produce coherent structures.
81 - Bo Zhang , Siyu Heng , Ting Ye 2020
Social distancing is widely acknowledged as an effective public health policy combating the novel coronavirus. But extreme social distancing has costs and it is not clear how much social distancing is needed to achieve public health effects. In this article, we develop a design-based framework to make inference about the dose-response relationship between social distancing and COVID-19 related death toll and case numbers. We first discuss how to embed observational data with a time-independent, continuous treatment dose into an approximate randomized experiment, and develop a randomization-based procedure that tests if a structured dose-response relationship fits the data. We then generalize the design and testing procedure to accommodate a time-dependent, treatment dose trajectory, and generalize a dose-response relationship to a longitudinal setting. Finally, we apply the proposed design and testing procedures to investigate the effect of social distancing during the phased reopening in the United States on public health outcomes using data compiled from sources including Unacast, the United States Census Bureau, and the County Health Rankings and Roadmaps Program. We rejected a primary analysis null hypothesis that stated the social distancing from April 27, 2020, to June 28, 2020, had no effect on the COVID-19-related death toll from June 29, 2020, to August 2, 2020 (p-value < 0.001), and found that it took more reduction in mobility to prevent exponential growth in case numbers for non-rural counties compared to rural counties.
Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. It is similar to influenza viruses and raises concerns through alarming levels of spread and severity resulting in an ongoing pandemic worldwide. Within eight months (by August 2020), it infected 24.0 million persons worldwide and over 824 thousand have died. Drones or Unmanned Aerial Vehicles (UAVs) are very helpful in handling the COVID-19 pandemic. This work investigates the drone-based systems, COVID-19 pandemic situations, and proposes an architecture for handling pandemic situations in different scenarios using real-time and simulation-based scenarios. The proposed architecture uses wearable sensors to record the observations in Body Area Networks (BANs) in a push-pull data fetching mechanism. The proposed architecture is found to be useful in remote and highly congested pandemic areas where either the wireless or Internet connectivity is a major issue or chances of COVID-19 spreading are high. It collects and stores the substantial amount of data in a stipulated period and helps to take appropriate action as and when required. In real-time drone-based healthcare system implementation for COVID-19 operations, it is observed that a large area can be covered for sanitization, thermal image collection, and patient identification within a short period (2 KMs within 10 minutes approx.) through aerial route. In the simulation, the same statistics are observed with an addition of collision-resistant strategies working successfully for indoor and outdoor healthcare operations. Further, open challenges are identified and promising research directions are highlighted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا