ﻻ يوجد ملخص باللغة العربية
The distribution of liquid water in ice-free clouds determines their radiative properties, a significant source of uncertainty in weather and climate models. Evaporation and turbulent mixing cause a cloud to display large variations in droplet-number density, but quite small variations in droplet size [Beals et al. (2015)]. Yet direct numerical simulations of the joint effect of evaporation and mixing near the cloud edge predict quite different behaviors, and it remains an open question how to reconcile these results with the experimental findings. To infer the history of mixing and evaporation from observational snapshots of droplets in clouds is challenging because clouds are transient systems. We formulated a statistical model that provides a reliable description of the evaporation-mixing process as seen in direct numerical simulations, and allows to infer important aspects of the history of observed droplet populations, highlighting the key mechanisms at work, and explaining the differences between observations and simulations.
In this article we report the atypical and anomalous evaporation kinetics of saline sessile droplets on surfaces with elevated temperatures. In a previous we showed that saline sessile droplets evaporate faster compared to water droplets when the sub
The article reports droplet evaporation kinetics on inclined substrates. Comprehensive experimental and theoretical analyses of the droplet evaporation behaviour for different substrate declination, wettability and temperatures have been presented. S
Evolution of fuel droplet evaporation zone and its interaction with the propagating flame front are studied in this work. A general theory is developed to describe the evolutions of flame propagation speed, flame temperature, droplet evaporation onse
The use of microscopic discrete fluid volumes (i.e., droplets) as microreactors for digital microfluidic applications often requires mixing enhancement and control within droplets. In this work, we consider a translating spherical liquid droplet to w
We numerically study the Rayleigh-Benard (RB) convection in two-dimensional model emulsions confined between two parallel walls at fixed temperatures. The systems under study are heterogeneous, with finite-size droplets dispersed in a continuous phas