ﻻ يوجد ملخص باللغة العربية
Serverless computing has rapidly grown following the launch of Amazons Lambda platform. Function-as-a-Service (FaaS) a key enabler of serverless computing allows an application to be decomposed into simple, standalone functions that are executed on a FaaS platform. The FaaS platform is responsible for deploying and facilitating resources to the functions. Several of todays cloud applications spread over heterogeneous connected computing resources and are highly dynamic in their structure and resource requirements. However, FaaS platforms are limited to homogeneous clusters and homogeneous functions and do not account for the data access behavior of functions before scheduling. We introduce an extension of FaaS to heterogeneous clusters and to support heterogeneous functions through a network of distributed heterogeneous target platforms called Function Delivery Network (FDN). A target platform is a combination of a cluster of homogeneous nodes and a FaaS platform on top of it. FDN provides Function-Delivery-as-a-Service (FDaaS), delivering the function to the right target platform. We showcase the opportunities such as varied target platforms characteristics, possibility of collaborative execution between multiple target platforms, and localization of data that the FDN offers in fulfilling two objectives: Service Level Objective (SLO) requirements and energy efficiency when scheduling functions by evaluating over five distributed target platforms using the FDNInspector, a tool developed by us for benchmarking distributed target platforms. Scheduling functions on an edge target platform in our evaluation reduced the overall energy consumption by 17x without violating the SLO requirements in comparison to scheduling on a high-end target platform.
The Function-as-a-Service (FaaS) paradigm has a lot of potential as a computing model for fog environments comprising both cloud and edge nodes. When the request rate exceeds capacity limits at the edge, some functions need to be offloaded from the e
Businesses have made increasing adoption and incorporation of cloud technology into internal processes in the last decade. The cloud-based deployment provides on-demand availability without active management. More recently, the concept of cloud-nativ
Function-as-a-Service (FaaS) is one of the most promising directions for the future of cloud services, and serverless functions have immediately become a new middleware for building scalable and cost-efficient microservices and applications. However,
Performance and energy are the two most important objectives for optimisation on modern parallel platforms. Latest research demonstrated the importance of workload distribution as a decision variable in the bi-objective optimisation for performance a
We present a highly scalable Monte Carlo (MC) three-dimensional photon transport simulation platform designed for heterogeneous computing systems. Through the development of a massively parallel MC algorithm using the Open Computing Language (OpenCL)