ﻻ يوجد ملخص باللغة العربية
Neutrino-matter interactions play an important role in core-collapse supernova (CCSN) explosions as they contribute to both lepton number and/or four-momentum exchange between neutrinos and matter, and thus act as the agent for neutrino-driven explosions. Due to the multiscale nature of neutrino transport in CCSN simulations, an implicit treatment of neutrino-matter interactions is desired, which requires solutions of coupled nonlinear systems in each step of the time integration scheme. In this paper we design and compare nonlinear iterative solvers for implicit systems with energy coupling neutrino-matter interactions commonly used in CCSN simulations. Specifically, we consider electron neutrinos and antineutrinos, which interact with static matter configurations through the Bruenn~85 opacity set. The implicit systems arise from the discretization of a non-relativistic two-moment model for neutrino transport, which employs the discontinuous Galerkin (DG) method for phase-space discretization and an implicit-explicit (IMEX) time integration scheme. In the context of this DG-IMEX scheme, we propose two approaches to formulate the nonlinear systems -- a coupled approach and a nested approach. For each approach, the resulting systems are solved with Anderson-accelerated fixed-point iteration and Newtons method. The performance of these four iterative solvers has been compared on relaxation problems with various degree of collisionality, as well as proto-neutron star deleptonization problems with several matter profiles adopted from spherically symmetric CCSN simulations. Numerical results suggest that the nested Anderson-accelerated fixed-point solver is more efficient than other tested solvers for solving implicit nonlinear systems with energy coupling neutrino-matter interactions.
Building on the framework of Zhang & Shu cite{zhangShu_2010a,zhangShu_2010b}, we develop a realizability-preserving method to simulate the transport of particles (fermions) through a background material using a two-moment model that evolves the angul
We derive conservative, multidimensional, energy-dependent moment equations for neutrino transport in core-collapse supernovae and related astrophysical systems, with particular attention to the consistency of conservative four-momentum and lepton nu
Monte Carlo approaches to radiation transport have several attractive properties such as simplicity of implementation, high accuracy, and good parallel scaling. Moreover, Monte Carlo methods can handle complicated geometries and are relatively easy t
We study electron-neutrino and electron-antineutrino signals from a supernova with strong magnetic field detected by a 100 kton liquid Ar detector. The change of neutrino flavors by resonant spin-flavor