ترغب بنشر مسار تعليمي؟ اضغط هنا

A DG-IMEX method for two-moment neutrino transport: Nonlinear solvers for neutrino-matter coupling

128   0   0.0 ( 0 )
 نشر من قبل Ming Tse Paul Laiu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutrino-matter interactions play an important role in core-collapse supernova (CCSN) explosions as they contribute to both lepton number and/or four-momentum exchange between neutrinos and matter, and thus act as the agent for neutrino-driven explosions. Due to the multiscale nature of neutrino transport in CCSN simulations, an implicit treatment of neutrino-matter interactions is desired, which requires solutions of coupled nonlinear systems in each step of the time integration scheme. In this paper we design and compare nonlinear iterative solvers for implicit systems with energy coupling neutrino-matter interactions commonly used in CCSN simulations. Specifically, we consider electron neutrinos and antineutrinos, which interact with static matter configurations through the Bruenn~85 opacity set. The implicit systems arise from the discretization of a non-relativistic two-moment model for neutrino transport, which employs the discontinuous Galerkin (DG) method for phase-space discretization and an implicit-explicit (IMEX) time integration scheme. In the context of this DG-IMEX scheme, we propose two approaches to formulate the nonlinear systems -- a coupled approach and a nested approach. For each approach, the resulting systems are solved with Anderson-accelerated fixed-point iteration and Newtons method. The performance of these four iterative solvers has been compared on relaxation problems with various degree of collisionality, as well as proto-neutron star deleptonization problems with several matter profiles adopted from spherically symmetric CCSN simulations. Numerical results suggest that the nested Anderson-accelerated fixed-point solver is more efficient than other tested solvers for solving implicit nonlinear systems with energy coupling neutrino-matter interactions.



قيم البحث

اقرأ أيضاً

Building on the framework of Zhang & Shu cite{zhangShu_2010a,zhangShu_2010b}, we develop a realizability-preserving method to simulate the transport of particles (fermions) through a background material using a two-moment model that evolves the angul ar moments of a phase space distribution function $f$. The two-moment model is closed using algebraic moment closures; e.g., as proposed by Cernohorsky & Bludman cite{cernohorskyBludman_1994} and Banach & Larecki cite{banachLarecki_2017a}. Variations of this model have recently been used to simulate neutrino transport in nuclear astrophysics applications, including core-collapse supernovae and compact binary mergers. We employ the discontinuous Galerkin (DG) method for spatial discretization (in part to capture the asymptotic diffusion limit of the model) combined with implicit-explicit (IMEX) time integration to stably bypass short timescales induced by frequent interactions between particles and the background. Appropriate care is taken to ensure the method preserves strict algebraic bounds on the evolved moments (particle density and flux) as dictated by Paulis exclusion principle, which demands a bounded distribution function (i.e., $fin[0,1]$). This realizability-preserving scheme combines a suitable CFL condition, a realizability-enforcing limiter, a closure procedure based on Fermi-Dirac statistics, and an IMEX scheme whose stages can be written as a convex combination of forward Euler steps combined with a backward Euler step. Numerical results demonstrate the realizability-preserving properties of the scheme. We also demonstrate that the use of algebraic moment closures not based on Fermi-Dirac statistics can lead to unphysical moments in the context of fermion transport.
We derive conservative, multidimensional, energy-dependent moment equations for neutrino transport in core-collapse supernovae and related astrophysical systems, with particular attention to the consistency of conservative four-momentum and lepton nu mber transport equations. After taking angular moments of conservative formulations of the general relativistic Boltzmann equation, we specialize to a conformally flat spacetime, which also serves as the basis for four further limits. Two of these---the multidimensional special relativistic case, and a conformally flat formulation of the spherically symmetric general relativistic case---are given in appendices for the sake of comparison with extant literature. The third limit is a weak-field, `pseudo-Newtonian approach citep{kim_etal_2009,kim_etal_2012} in which the source of the gravitational potential includes the trace of the stress-energy tensor (rather than just the mass density), and all orders in fluid velocity $v$ are retained. Our primary interest here is in the fourth limit: `$mathcal{O}(v)$ moment equations for use in conjunction with Newtonian self-gravitating hydrodynamics. We show that the concept of `$mathcal{O}(v)$ transport requires care when dealing with both conservative four-momentum and conservative lepton number transport, and present two self-consistent options: `$mathcal{O}(v)$-plus transport, in which an $mathcal{O}(v^2)$ energy equation combines with an $mathcal{O}(v)$ momentum equation to give an $mathcal{O}(v^2)$ number equation; and `$mathcal{O}(v)$-minus transport, in which an $mathcal{O}(v)$ energy equation combines with an $mathcal{O}(1)$ momentum equation to give an $mathcal{O}(v)$ number equation.
Monte Carlo approaches to radiation transport have several attractive properties such as simplicity of implementation, high accuracy, and good parallel scaling. Moreover, Monte Carlo methods can handle complicated geometries and are relatively easy t o extend to multiple spatial dimensions, which makes them potentially interesting in modeling complex multi-dimensional astrophysical phenomena such as core-collapse supernovae. The aim of this paper is to explore Monte Carlo methods for modeling neutrino transport in core-collapse supernovae. We generalize the Implicit Monte Carlo photon transport scheme of Fleck & Cummings and gray discrete-diffusion scheme of Densmore et al. to energy-, time-, and velocity-dependent neutrino transport. Using our 1D spherically-symmetric implementation, we show that, similar to the photon transport case, the implicit scheme enables significantly larger timesteps compared with explicit time discretization, without sacrificing accuracy, while the discrete-diffusion method leads to significant speed-ups at high optical depth. Our results suggest that a combination of spectral, velocity-dependent, Implicit Monte Carlo and discrete-diffusion Monte Carlo methods represents a robust approach for use in neutrino transport calculations in core-collapse supernovae. Our velocity-dependent scheme can easily be adapted to photon transport.
157 - Takashi Yoshida 2011
We study electron-neutrino and electron-antineutrino signals from a supernova with strong magnetic field detected by a 100 kton liquid Ar detector. The change of neutrino flavors by resonant spin-flavor
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا