ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin misalignment of black hole binaries from young star clusters: implications for the origin of gravitational waves events

54   0   0.0 ( 0 )
 نشر من قبل Alessandro Alberto Trani
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent studies indicate that the progenitors of merging black hole (BH) binaries from young star clusters can undergo a common envelope phase just like isolated binaries. If the stars emerge from the common envelope as naked cores, tidal interactions can efficiently synchronize their spins before they collapse into BHs. Contrary to the isolated case, these binary BHs can also undergo dynamical interactions with other BHs in the cluster before merging. The interactions can tilt the binary orbital plane, leading to spin-orbit misalignment. We estimate the spin properties of merging binary BHs undergoing this scenario by combining up-to-date binary population synthesis and accurate few-body simulations. We show that post-common envelope binary BHs are likely to undergo only a single encounter, due to the high binary recoil velocity and short coalescence times. Adopting conservative limits on the binary-single encounter rates, we obtain a local BH merger rate density of ~6.6 yr^-1 Gpc^-3. Assuming low (<0.2) natal BH spins, this scenario reproduces the trends in the distributions of effective spin Xeff and precession parameters Xp inferred from GWTC-2, including the peaks at (Xeff, Xp) ~ (0.1, 0.2) and the tail at negative Xeff values.


قيم البحث

اقرأ أيضاً

In black hole X-ray binaries, a misalignment between the spin axis of the black hole and the orbital angular momentum can occur during the supernova explosion that forms the compact object. In this letter we present population synthesis models of Gal actic black hole X-ray binaries, and study the probability density function of the misalignment angle, and its dependence on our model parameters. In our modeling, we also take into account the evolution of misalignment angle due to accretion of material onto the black hole during the X-ray binary phase. The major factor that sets the misalignment angle for X-ray binaries is the natal kick that the black hole may receive at its formation. However, large kicks tend to disrupt binaries, while small kicks allow the formation of XRBs and naturally select systems with small misalignment angles. Our calculations predict that the majority (>67%) of Galactic field BH XRBs have rather small (>10 degrees) misalignment angles, while some systems may reach misalignment angles as high as ~90 degrees and even higher. This results is robust among all population synthesis models. The assumption of small small misalignment angles is extensively used to observationally estimate black hole spin magnitudes, and for the first time we are able to confirm this assumption using detailed population synthesis calculations.
The transformation of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is revisited. In contrast to the previous calculations of the similar effect, we study the realistic case of the gravitational radiation frequency below the plasma frequency of the surrounding medium. The gravitational waves propagating in the plasma constantly create electromagnetic radiation dragging it with them, despite the low frequency. The plasma heating by the unattenuated electromagnetic wave may be significant in a hot rarefied plasma with strong magnetic field and can lead to a noticeable burst of electromagnetic radiation with higher frequency. The graviton-to-photon conversion effect in plasma is discussed in the context of possible electromagnetic counterparts of GW150914 and GW170104.
LIGO and Virgo have reported the detection of GW190521, from the merger of a binary black hole (BBH) with a total mass around $150$ M$_odot$. While current stellar models limit the mass of any black hole (BH) remnant to about $40 - 50$ M$_odot$, more massive BHs can be produced dynamically through repeated mergers in the core of a dense star cluster. The process is limited by the recoil kick (due to anisotropic emission of gravitational radiation) imparted to merger remnants, which can escape the parent cluster, thereby terminating growth. We study the role of the host cluster metallicity and escape speed in the buildup of massive BHs through repeated mergers. Almost independent of host metallicity, we find that a BBH of about $150$ M$_odot$ could be formed dynamically in any star cluster with escape speed $gtrsim 200$ km s$^{-1}$, as found in galactic nuclear star clusters as well as the most massive globular clusters and super star clusters. Using an inspiral-only waveform, we compute the detection probability for different primary masses ($ge 60$ M$_odot$) as a function of secondary mass and find that the detection probability increases with secondary mass and decreases for larger primary mass and redshift. Future additional detections of massive BBH mergers will be of fundamental importance for understanding the growth of massive BHs through dynamics and the formation of intermediate-mass BHs.
We study the prospects of future gravitational wave (GW) detectors in probing primordial black hole (PBH) binaries. We show that across a broad mass range from $10^{-5}M_odot$ to $10^7M_odot$, future GW interferometers provide a potential probe of th e PBH abundance that is more sensitive than any currently existing experiment. In particular, we find that galactic PBH binaries with masses as low as $10^{-5}M_odot$ may be probed with ET, AEDGE and LISA by searching for nearly monochromatic continuous GW signals. Such searches could independently test the PBH interpretation of the ultrashort microlensing events observed by OGLE. We also consider the possibility of observing GWs from asteroid mass PBH binaries through graviton-photon conversion.
Black hole-main sequence star (BH-MS) binaries are one of the targets of the future data releases of the astrometric satellite {it Gaia}. They are supposed to be formed in two main sites: a galactic field and star clusters. However, previous work has never predicted the number of BH-MS binaries originating in the latter site. In this paper, we estimate the number of BH-MS binaries formed in open clusters and detectable with {it Gaia} based on the results of {it N}-body simulations. By considering interstellar extinction in the Milky Way (MW) and observational constraints, we predict $sim 10$ BH-MS binaries are observable. We also find that chemical abundance patterns of companion MSs will help us to identify the origin of the binaries as star clusters. Such MSs are not polluted by outflows of the BH progenitors, such as stellar winds and supernova ejecta. Chemical anomalies might be a good test to confirm the origin of binaries with relatively less massive MSs ($lesssim 5M_{odot}$), orbital periods ($sim 1.5;$year) and higher eccentricities ($e gtrsim 0.1$).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا