ﻻ يوجد ملخص باللغة العربية
B-mode ultrasound imaging is a popular medical imaging technique. Like other image processing tasks, deep learning has been used for analysis of B-mode ultrasound images in the last few years. However, training deep learning models requires large labeled datasets, which is often unavailable for ultrasound images. The lack of large labeled data is a bottleneck for the use of deep learning in ultrasound image analysis. To overcome this challenge, in this work we exploit Auxiliary Classifier Generative Adversarial Network (ACGAN) that combines the benefits of data augmentation and transfer learning in the same framework. We conduct experiment on a dataset of breast ultrasound images that shows the effectiveness of the proposed approach.
Quantitative ultrasound (QUS) can reveal crucial information on tissue properties such as scatterer density. If the scatterer density per resolution cell is above or below 10, the tissue is considered as fully developed speckle (FDS) or low-density s
Ultrasound (US) image segmentation embraced its significant improvement in deep learning era. However, the lack of sharp boundaries in US images still remains an inherent challenge for segmentation. Previous methods often resort to global context, mu
Congenital heart disease (CHD) is the most common type of birth defect, which occurs 1 in every 110 births in the United States. CHD usually comes with severe variations in heart structure and great artery connections that can be classified into many
Histopathological image analysis is an essential process for the discovery of diseases such as cancer. However, it is challenging to train CNN on whole slide images (WSIs) of gigapixel resolution considering the available memory capacity. Most of the
Convolutional neural networks (CNNs) have been widely used for hyperspectral image classification. As a common process, small cubes are firstly cropped from the hyperspectral image and then fed into CNNs to extract spectral and spatial features. It i