ﻻ يوجد ملخص باللغة العربية
We focus on the connection between the internal dynamo magnetic field and the stellar wind. If the star has a cyclic dynamo, the modulations of the magnetic field can affect the wind, which in turn can back-react on the boundary conditions of the star, creating a feedback loop. We have developed a 2.5-dimensional numerical set-up to model this essential coupling. We have implemented an alpha-Omega mean-field dynamo in the PLUTO code, and then coupled it to a spherical polytropic wind model via an interface composed of four grid layers with dedicated boundary conditions. We present here a dynamo model close to a young Sun with cyclic magnetic activity. First we show how this model allows to track the influence of the dynamo activity on the corona by displaying the correlation between the activity cycle, the coronal structure and the time evolution of integrated quantities. Then we add the feedback of the wind on the dynamo and discuss the changes observed in the dynamo symmetry and the wind variations. We explain these changes in terms of dynamo modes : in this parameter regime, the feedback loop leads to a coupling between the dynamo families via a preferred growth of the quadrupolar mode. We also study our interface in terms of magnetic helicity, and show that it leads to a small injection in the dynamo. This model confirms the importance of coupling physically internal and external stellar layers, as it has a direct impact on both the dynamo and the wind.
Though generated deep inside the convection zone, the solar magnetic field has a direct impact on the Earth space environment via the Parker spiral. It strongly modulates the solar wind in the whole heliosphere, especially its latitudinal and longitu
Stellar winds are an integral part of the underlying dynamo, the motor of stellar activity. The wind controls the stars angular momentum loss, which depends on the magnetic field geometry which varies significantly in time and latitude. Here we study
We give a short introduction to the subject and review advances in understanding the basic ingredients of the mean-field dynamo theory. The discussion includes the recent analytic and numerical work in developments for the mean electromotive force of
Solar activity cycle varies in amplitude. The last Cycle 24 is the weakest in the past century. Suns activity dominates Earths space environment. The frequency and intensity of the Suns activity are accordant with the solar cycle. Hence there are pra
Using the non-linear mean-field dynamo models we calculate the magnetic cycle parameters, like the dynamo cycle period, the amplitude of the total magnetic energy, and the Poynting flux luminosity from the surface for the solar analogs with rotation