ﻻ يوجد ملخص باللغة العربية
We present the Mathematica package QMeS-Derivation. It derives symbolic functional equations from a given master equation. The latter include functional renormalisation group equations, Dyson-Schwinger equations, Slavnov-Taylor and Ward identities and their modifications in the presence of momentum cutoffs. The modules allow to derive the functional equations, take functional derivatives, trace over field space, apply a given truncation scheme, and do momentum routings while keeping track of prefactors and signs that arise from fermionic commutation relations. The package furthermore contains an installer as well as Mathematica notebooks with showcase examples.
New methods for obtaining functional equations for Feynman integrals are presented. Application of these methods for finding functional equations for various one- and two- loop integrals described in detail. It is shown that with the aid of functiona
We propose a regularization procedure for the novel Einstein-Gauss-Bonnet theory of gravity, which produces a set of field equations that can be written in closed form in four dimensions. Our method consists of introducing a counter term into the act
L1Packv2 is a Mathematica package that contains a number of algorithms that can be used for the minimization of an $ell_1$-penalized least squares functional. The algorithms can handle a mix of penalized and unpenalized variables. Several instructive
Using functional methods and the exact renormalization group we derive Ward identities for the Anderson impurity model. In particular, we present a non-perturbative proof of the Yamada-Yosida identities relating certain coefficients in the low-energy
A rigorous derivation of the density functional in the Hohenberg-Kohn theory is presented. With no assumption regarding the magnitude of the electric coupling constant $e^2$ (or correlation), this work provides a firm basis for first-principles calcu